08/08/06 08:30:17
tan(x) = sin(x)/cos(x),
sin(π/24) = (√(2-√(2+√3)))/2,
cos(π/24) = (√(2+√(2+√3)))/2,
これらを使って、
tan(pi/24) = (√(2-√(2+√3)))/(√(2+√(2+√3)))
分母分子に√(2-√(2+√3))を掛けると
(分子) = 2-√(2+√3)
(分母) = √(4-(2+√(3))) = √(2-√3)
さらに分母分子に√(2-√3)を掛けて
(分子) = (2-√(2+√3))√(2-√3)
= 2√(2-√3) - √(4-3)
= 2√(2-√3) - 1
(分母) = 2-√3
更に分母分子に2+√3を掛けて
(分子) = (2√(2-√3) - 1)(2+√3)
= 4√(2-√3) - 2 + 2√(3)√(2-√3) - √3
(分母) = 1
あとは分子をなるべく簡単な形にする。
(与式) = √(2-√3)(4+2√3) - (2+√3)
= (2+√3)(2√(2-√3) - 1)
ここで、2√(2-√3) = √(8-2√12) = √((√(6)-√(2))^2) = √(6)-√(2) より
(与式) = (2+√3)(√6 - √2 - 1)
= 2√6 - 2√2 - 2 + 3√2 - √6 - √3
= √2 - √3 + √6 - 2
答え. tan(π/24) = √2 - √3 + √6 - 2
これ以上簡単に出来るかどうかはわかりませんでした。