★東大入試作問者になったつもりのスレ★ 第十三問at MATH
★東大入試作問者になったつもりのスレ★ 第十三問 - 暇つぶし2ch49:MASUDA ◆5cS5qOgH3M
08/01/20 22:09:03
>>48
略解で
1≦i<j≦nをみたす任意の(i,j)に対して,b[n,j]-b[n,i]がb[n,i]とb[n,j]の最大公約数となるような,異なるn個の正整数b[n,1],b[n,2],…,b[n,n]の存在を示します.…(*)
n=3のとき2,3,4が(*)を満たす.
n=kのときb[k,1],…,b[k,k]が存在すると仮定し,これらの最小公倍数をL[k]とします.
n=k+1のとき
b[k+1,1]=L[k]
b[k+1,m]=L[k]+b[k,m-1](m=2,3,…,k+1)
とおけばb[k+1,1],…,b[k+1,k+1]は(*)を満たす.
よって帰納法から(*)は成立.
ここで,
a[k]=2^b[2008,k]とおいてやれば題意をみたす.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch