08/01/13 01:35:08
Fisher情報量の計算についての質問です。
確率密度関数
f(x,y)=k(θ)exp{-(x+y+θxy)}, 0<x,y<∞, k:基準化定数
としたとき
Fisher情報量I(θ)は
I(θ)=-E[∂^2/∂θ^2{logf(X,Y)}]={θ^2+2θ-k(k+θ-1)}/θ^4
となる。これは導出できました。
しかし
xの周辺確率f(x)=∫[0,∞]f(x,y)dy= k(θ)exp(-x)/(1+θx)
のFisher情報量は
Ix(θ)=I(θ)-{1+4θ+2θ^2-k(1+3θ)}/2θ^4
となるらしいのですがその導出法がわかりません。
Fisher情報量を上に書いた定義に即して計算すると
Ix(θ)=I(θ)-E[{X/1+θX}^2]
とまでは変形できるのですが、それ以上は計算できません。
別の方法があるのでしょうか。