08/01/12 18:51:48
>>551
その路線でどうするかは知らんが、右辺が多項式なので多項式から特解を探せる。
T=D^2-2D+3 とする。
T1 = 3, Tx = -2+3x, Tx^2 = 2-4x+3x^2
であるから、xの2次式の作る3次元空間を基底 1,x,x^2 で記述すると、
T はこの基底について行列
[3,-2, 2]
[0, 3,-4]
[0, 0, 3]
で表される線形変換をひきおこす。逆変換は行列
[(1/3),(2/9),(2/27)]
[0,(1/3),(4/9)]
[0,0,(1/3)]
で表されるから
x^2 = T{(2/27) + (4/9)x + (1/3)x^2 } すなわち
( D^2-2D+3 ){(2/27) + (4/9)x + (1/3)x^2 } = x^2
である。