07/12/15 12:22:38
Hahn-Banachの定理(>>104)を局所凸位相線形空間に適用するには
局所凸位相線形空間の間の連続写像を半ノルムで特徴付ける必要がある。
これについて述べる。
110:Kummer ◆g2BU0D6YN2
07/12/15 14:12:22
命題
K を可換とは限らない体とする。
| | を K の自明でない絶対値(過去スレ006の414)とする。
E と F を K 上の左位相線形空間とし E の位相は半ノルムの集合 Γ で
定義され(過去スレ008の469) F の位相は半ノルムの集合 Γ' で
定義されるとする。
f : E → F を線形写像とする。
f が連続であるためには
任意の q ∈ Γ' に対して Γ の元の有限列 p_i, i = 1, ... , n と
実数 α > 0 が存在し任意の x ∈ E に対して
q(f(x)) ≦ αsup{ p_i(x) | i = 1, ... , n}
となることが必要十分である。
証明
条件の十分性:
任意の γ > 0 に対して p_i(x) < γ/α, i = 1, ... , n
であれば、q(f(x)) < γ であるから f は 0 で連続である。
従って、
a ∈ E と任意の γ > 0 に対して p_i(x - a) < γ/α, i = 1, ... , n
であれば、q(f(x) - f(a)) = q(f(x - a)) < γ であるから
f は a で連続である。
(続く)
111:Kummer ◆g2BU0D6YN2
07/12/15 14:12:59
>>110 の続き。
条件の必要性:
f は 0 で連続だから、
任意の γ > 0 に対して Γ の元の有限列 p_i, i = 1, ... , n と
実数 α > 0 が存在し p_i(x) < α, i = 1, ... , n
であれば、q(f(x)) < γ となる。
p = sup{ p_i(x) | i = 1, ... , n} とおく。
p は半ノルムである。
α < 1 と仮定してよい。
さらに、K の絶対値は自明でないから
α = |λ| < 1 となる λ ∈ K があると仮定してよい。
p(x) ≦ |λ|^(m + 1) となる有理整数 m がある。
p(λ^(-m)x) ≦ |λ| であるから、q(f(x)) < γ|λ|^m
このとき、p(x) = 0 なら m はいくらでも大きく出来るから
q(f(x)) = 0 である。
よって、p(x) ≠ 0 と仮定してよい。
|λ|^(m + 2) < p(x) ≦ |λ|^(m + 1) となる有理整数 m がある。
|λ|^m < |λ|^(-2) p(x)
よって、
q(f(x)) < (γ|λ|^(-2))p(x)
α = γ|λ|^(-2) とおけば、q(f(x)) < αp(x)
証明終
112:Kummer ◆g2BU0D6YN2
07/12/15 14:46:51
命題(>>104 の系2)
K を実数体または複素数体とする。
E を K 上の局所凸線形空間とする。
M を E の線形部分空間で f を M 上の連続な線形形式とする。
f は E 上の連続な線形形式 h に拡張される。
証明
>>110 より E 上の連続な半ノルム p で
任意の x ∈ M に対して |f(x)| ≦ p(x) となるものがある。
>>104 より E 上の線形形式 h で f の拡張であり
任意の x ∈ E に対して |h(x)| ≦ p(x) となるものがある。
>>110 より h は連続である。
証明終
113:Kummer ◆g2BU0D6YN2
07/12/15 14:49:23
局所凸線形位相空間が重要な理由の一つは >>112 が成り立つことである。
114:Kummer ◆g2BU0D6YN2
07/12/15 15:35:04
命題(>>104 の系3)
K を実数体または複素数体とする。
E を K 上のノルム空間とする。
M を E の線形部分空間で f を M 上の連続な線形形式とする。
E 上の連続な線形形式 h で f の拡張であり |h| = |f| となるものが
存在する。
ここで、 |h| と |f| はそれぞれ h と f のノルム(過去スレ006の690)
である。
証明
p を E のノルムとする。f は連続だから |f| は有限である。
任意の x ∈ M に対して |f(x)| ≦ |f|p(x) となる。
|f|p(x) は E の半ノルムだから
>>104 より,E 上の線形形式 h で f の拡張であり
任意の x ∈ E に対して |h(x)| ≦ |f|p(x) となるものが存在する。
よって、|h| ≦ |f| である。
よって |h| は有限であり、h は連続である。
x ∈ E に対して |h(x)| ≦ |h|p(x) となる。
h は f の拡張であるから
x ∈ M に対して |f(x)| ≦ |h|p(x) となる。
よって、|f| ≦ |h| である。
証明終
115:Kummer ◆g2BU0D6YN2
07/12/16 13:39:54
定義
K を可換とは限らない位相体(過去スレ006の190)とする。
E を K 上の左位相線形空間(過去スレ006の583)とし
E は部分線形空間 M_1. ... , M_n の直和であるとする。
M = ΠM_i を位相線形空間の直積とする。
M から E への写像 f : M → E を
f(x_1, ... , x_n) = x_1 + ... , + x_n で定義する。
f は連続な全単射であるが、これが位相同型であるとき
E は M_i の位相直和であるという。
116:Kummer ◆g2BU0D6YN2
07/12/16 13:54:07
命題
K を可換とは限らない位相体(過去スレ006の190)とする。
E を K 上の左位相線形空間(過去スレ006の583)とし
E は部分線形空間 M_1. ... , M_n の直和であるとする。
E から各 M_i への射影を p_i とする。
E が M_i の位相直和(>>115)であるためには各 p_i が連続であることが
必要十分である。
証明
必要性は位相直和の定義(>>115)から明らかである。
各 p_i が連続であるとする。
M から E への写像 f : M → E を
f(x_1, ... , x_n) = x_1 + ... , + x_n で定義する。
x ∈ E に (p_1(x), ... , p_n(x)) ∈ ΠM_i を
対応させる写像 g は連続であり、f の逆写像である。
証明終
117:Kummer ◆g2BU0D6YN2
07/12/16 16:01:04
定義
K を可換とは限らない位相体(過去スレ006の190)とする。
E を K 上の左位相線形空間(過去スレ006の583)とし
E は部分線形空間 M と N の位相直和(>>115)であるとする。
このとき N を M の位相補空間と言う。
118:Kummer ◆g2BU0D6YN2
07/12/16 16:10:40
命題
K を可換とは限らない位相体(過去スレ006の190)とする。
E を K 上の左位相線形空間(過去スレ006の583)とし
M を E の部分線形空間とする。
f : E → M を連続な線形写像で任意の x ∈ M に対して
f(x) = x とする。
このとき M は位相補空間(>>117)を持つ。
証明
N = f^(-1)(0) とおく。
E は M と N の直和である。
1 - f はこの直和分解に関して E から N への射影であり連続である。
>>116 より E は M と N の位相直和(>>115)である。
証明終
119:Kummer ◆g2BU0D6YN2
07/12/16 18:21:04
命題(>>104 の系4)
K を実数体または複素数体とする。
E を K 上の分離的な局所凸線形空間とする。
M を E の有限次元の線形部分空間とする。
M は位相補空間を持つ。
証明
e_1, . . . , e_n を M の任意の基底とする。
過去スレ006の651より
写像 f : Σ(ξ_i)(e_i) → (ξ_i) は M から K^n への位相同型である。
f_i : M → K を f(Σ(ξ_i)(e_i)) = ξ_i により定義する。
>>112より f_i は E 上の連続な線形形式 g_i に拡張される。
g(x) = (g_1(x), ... , g_n(x)) により g : E → K^n を定義する。
h = f^(-1)g とおく。h : E → M は連続な線形写像であり、
x ∈ M のとき h(x) = x である。
>>118 より M は位相補空間を持つ。
証明終
120:Kummer ◆g2BU0D6YN2
07/12/22 11:35:28
後で必要になるのでアフィン空間について寄り道をする。
アフィン空間とは標語的に言うと、原点+べクトル空間のことである。
正確に定義すると次のようになる。
121:Kummer ◆g2BU0D6YN2
07/12/22 11:36:26
定義
K を可換とは限らない体とする。
V を K 上の左線形空間とする。
V に付随するアフィン空間 E とは V を加法群とみたとき
推移的な V-集合(過去スレ004の388,389) E であり、
E のある1点の安定化部分群(過去スレ004の392)が 0 と
なるようなものである。
122:Kummer ◆g2BU0D6YN2
07/12/22 11:46:47
K を可換とは限らない体とする。
V を K 上の左線形空間とし、
E を V に付随するアフィン空間(>>121)とする。
V は E に推移的に作用するから、E の任意の点の安定化部分群は
0 である。
E の点 p と V の元 x に対して x の p に対する作用を p + x または
x + p と書く。
V は E に推移的に作用するから、
E の2元 p, q に対して q = p + x となる x ∈ V が有る。
y ∈ V に対して p + x = p + y なら p + (x - y) = p である。
p の安定化部分群は 0 だから x - y = 0 である。
即ち q = p + x となる x ∈ V は一意に定まる。
このとき x = q - p と書く。
123:Kummer ◆g2BU0D6YN2
07/12/22 12:05:43
K を可換とは限らない体とする。
V を K 上の左線形空間とする。
x ∈ V と y ∈ V に対して x の y に対する作用を x + y と定義することにより
V は V に付随するアフィン空間(>>121)になる。
E を V に付随するアフィン空間(>>121)とする。
p ∈ E をとる。
>>122 より x ∈ V に対して p + x ∈ E を対応させる写像 f は
V から E への全単射である。
x ∈ V, y ∈ V のとき
f(x + y) = p + (x + y) = (p + x) + y = f(x) + y
よって f は V-集合としての同型(過去スレ004の399)である。
124:Kummer ◆g2BU0D6YN2
07/12/23 06:54:25
定義
K を可換とは限らない体とする。
V を K 上の左線形空間とし、
E を V に付随するアフィン空間(>>121)とする。
E の部分集合 F が E のアフィン部分空間であるとは、F が空集合であるか
V の線形部分空間 W と E の点 p があり、F = p + W と書けることを言う。
ここで、 p + W = { p + x | x ∈ W } である。
125:Kummer ◆g2BU0D6YN2
07/12/23 07:33:17
K を可換とは限らない体とする。
V を K 上の左線形空間とし、
E を V に付随するアフィン空間(>>121)とする。
a, x_1, ... , x_n を E の(必ずしも相異ならない)点とする。
1 ≦ i ≦ n のとき x_i - a は V に属す。
従って、λ_1, ... , λ_n を K の元としたとき
x = a + Σλ_i(x_i - a) は E に属す。
p を E の任意の点とする。
x - p = a - p + Σλ_i(x_i - p - (a - p))
= (1 - Σλ_i)(a - p) + Σλ_i(x_i - a)
これから次の命題が出る。
126:Kummer ◆g2BU0D6YN2
07/12/23 07:39:23
命題
K を可換とは限らない体とする。
V を K 上の左線形空間とし、
E を V に付随するアフィン空間(>>121)とする。
x_1, ... , x_n を E の(必ずしも相異ならない)点とする。
λ_1, ... , λ_n を K の元の列で Σλ_i = 1 とする。
p を E の任意の点とする。
x = p + Σλ_i(x_i - p) は p の取り方によらない。
証明
q を E の点とする。
x - q = p - q + Σλ_i(x_i - q - (p - q))
= (1 - Σλ_i)(p - q) + Σλ_i(x_i - q) = Σλ_i(x_i - q)
即ち
x = q + Σλ_i(x_i - q)
証明終
127:Kummer ◆g2BU0D6YN2
07/12/23 08:04:17
定義
K を可換とは限らない体とする。
V を K 上の左線形空間とし、
E を V に付随するアフィン空間(>>121)とする。
x_1, ... , x_n を E の(必ずしも相異ならない)点とする。
λ_1, ... , λ_n を K の元の列で Σλ_i = 1 とする。
p を E の任意の点とする。
>>126 より
x = p + Σλ_i(x_i - p) は p の取り方によらない。
x を x_i の質量 λ_i の重心と言う。
128:Kummer ◆g2BU0D6YN2
07/12/23 08:36:05
命題
K を可換とは限らない体とする。
V を K 上の左線形空間とし、E を V に付随するアフィン空間(>>121)とする。
E の部分集合 F が E のアフィン部分空間(>>124)であるためには、
次の条件が成り立つことが必要十分である。
F の任意の有限点列 x_1, ... , x_n と K の元の有限列
λ_1, ... , λ_n で Σλ_i = 1 となるものに対して、
x_i の質量 λ_i の重心(>>127)が常に F に属す。
証明
必要性:
F = p + W とする。ここで、 p ∈ E で W は V の線形部分空間である。
x_1, ... , x_n を F の元の有限列、
λ_1, ... , λ_n を K の元の有限列で Σλ_i = 1 とする。
x_i - p ∈ W であるから、
x_i の質量 λ_i の重心 p + Σλ_i(x_i - p) は F に属す。
十分性:
F は空でないと仮定してよい。
a ∈ F をとる。
W = { x - a | x ∈ F } は 0 = a - a を含むから空ではない。
x, y を W の元とし、λ ∈ K, μ ∈ K とする。
a + λ(x - a) + μ(y - a)
= (1 - λ - μ)(a - a) + λ(x - a) + μ(y - a)
これは a, x, y の質量がそれぞれ 1 - λ - μ, λ, μ の重心である。
よって、仮定から a + λ(x - a) + μ(y - a) ∈ F である。
よって、 λ(x - a) + μ(y - a) ∈ W である。
即ち W は V の線形部分空間である。
証明終
129:Kummer ◆g2BU0D6YN2
07/12/23 09:26:53
命題
K を可換とは限らない体とする。
V を K 上の左線形空間とし、
E を V に付随するアフィン空間(>>121)とする。
(x_i), i ∈ I を E の元の族とする。
(x_i) の質量 (λ_i) の重心(>>127)全体は E のアフィン部分空間である。
ここで、(λ_i), i ∈ I は K の元の族で有限個の i ∈ I を除いて
λ_i = 0 で Σλ_i = 1 である。
証明
I が空集合のときは明らかだから I は空集合でないとする。
i ∈ I を固定する。
(λ_i), i ∈ I を K の元の族で有限個の i ∈ I を除いて
λ_i = 0 で Σλ_i = 1 とする。
(x_i) の質量 (λ_i) の重心は、x_i + Σλ_j(x_j - x_i), i ≠ j と
書ける。
これから命題の主張は明らかである。
証明終