代数学総合スレッド Part4at MATH
代数学総合スレッド Part4 - 暇つぶし2ch260:132人目の素数さん
08/02/15 11:31:18
>>257
しゃあねえなあ。207 を書き下してやる。

k を非負整数として (a+b)^k を考える。a, b 代数的だから、
a^n や b^m はそれよりも小さな次数の元たちで書き直せる。
よって、(a+b)^k は 1, ..., a^{n-1} b^{m-1} の、nm 個の項の
Q 係数の線型結合で書ける。つまり,(a+b)^k は
Q 上 nm 次元のベクトルだと考えられる (基底は a^i b^j).

ところで 1, a+b, ..., (a+b)^{nm} を考える。これらはどれも Q 上 nm 次元の
ベクトルで、nm 本よりたくさんあるのだから、これらは線型従属。
つまり、ある Q 係数の関係式
 γ_0 + γ_1 (a+b) + ... + γ_{nm} (a+b)^{nm} = 0
が成立。これは (a+b) が代数的と言っているのと同じ。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch