面白い問題おしえて~な 十三問目at MATH
面白い問題おしえて~な 十三問目 - 暇つぶし2ch32:132人目の素数さん
07/07/22 16:34:56
>26

a≧b≧c としても一般性を失わない。
A,B,C を中心とする円を α,β,γ とすれば、
 (α∪β∪γ) = α + β + γ - (α∩β) - (β∩γ) - (γ∩α) + (α∩β∩γ),
 S(α) = πb^2,
 S(β) = S(γ) = πa^2,
 S(α∩β) = S(α∩γ) = f(a,b),
 S(β∩γ) = f(a,a),

【補題】
 0<r≦R とする。半径Rの円をC, その周上の点を中心とする半径rの円をcとすると,
 共通部分の面積 S(C∩c) は,
  f(R,r) = (π/2)r^2 + (2R^2 -r^2)・arcsin(r/2R) -r√{R^2 -(r/2)^2},
  f(R,R) = {(2π/3) - (√3)/2}R^2,

残った S(α∩β∩γ) をどうするかという問題。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch