不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch952:132人目の素数さん
09/06/09 23:44:18
>>948
地道にやると・・・
∫ e^x・(sinx)^2 dx = ∫ e^x・{1-cos(2x)}/2 dx = e^x・{(1/2) - (1/10)cos(2x) -(1/5)sin(2x)},
(与式) = (2/5)(e^π - 1) だが、 この後が・・・・

>>951 (下)
 a^2 + b^2 + c^2 = ab+bc+ca + F_0 ≧ ab+bc+ca,
 (左辺) = 2/(1+a^2) + 2/(1+b^2) + 2/(1+c^2) -3
  ≦ 6/{1 + (a^2 + b^2 + c^2)/3} -3   (← 2/(1+x) は下に凸)
  ≦ 6/{1 + (ab+bc+ca)/3} -3,


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch