不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch901:132人目の素数さん
09/05/16 18:33:49
>>900
 正解でつ!!

三角形 A1AjA(j+1) の面積は
 (1/2)A1Aj・x_j・sin(∠A1AjA(j+1)) ≦ (1/2)A1Aj・x_j ≦ (1/2){x_1 + x_2 + ・・・・・ + x_(j-1)}x_j
これを j=2 から j=n+1 までたす。
 x_(n+2) を含まないところがミソ。この辺が重なるように2つ並べると・・・

〔系〕
点対称または線対称な2n+2角形の 面積を S, 周長を
 L = 2(x_1 + x_2 + ・・・・・ + x_n + x_(n+1)),
とすると、
 {n/(8(n+1))}L^2 ≧ ∑[1≦i<j≦n+1] x_i・x_j ≧ S,

※ 等周問題からは {1/(4π)}L^2 ≧ S, (等号成立は円のとき)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch