不等式への招待 第3章at MATH不等式への招待 第3章 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト900:132人目の素数さん 09/05/16 16:43:25 >>895 凸でない場合は、凸でない部分を折り返すことで 辺の長さの構成を変えずにより面積を大きくできるので 凸の場合を考えればよい。 (n+2)角形を、点A1を端点の一つとする対角線で分割し それぞれで三角不等式を用いて上からおさえれば示せる。 901:132人目の素数さん 09/05/16 18:33:49 >>900 正解でつ!! 三角形 A1AjA(j+1) の面積は (1/2)A1Aj・x_j・sin(∠A1AjA(j+1)) ≦ (1/2)A1Aj・x_j ≦ (1/2){x_1 + x_2 + ・・・・・ + x_(j-1)}x_j これを j=2 から j=n+1 までたす。 x_(n+2) を含まないところがミソ。この辺が重なるように2つ並べると・・・ 〔系〕 点対称または線対称な2n+2角形の 面積を S, 周長を L = 2(x_1 + x_2 + ・・・・・ + x_n + x_(n+1)), とすると、 {n/(8(n+1))}L^2 ≧ ∑[1≦i<j≦n+1] x_i・x_j ≧ S, ※ 等周問題からは {1/(4π)}L^2 ≧ S, (等号成立は円のとき) 902:132人目の素数さん 09/05/26 03:04:31 a,b,cは正の実数でa+b+c=1を満たす。nを正の整数とするとき Π(k=0_n) 1/{1+a^(2^k)}{1+b^(2^k)}{1+c^(2^k)} > 8abc を示せ。 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch