09/02/14 00:12:52
>>737
〔補題〕 a,b,c≧0 のとき |⊿| ≦ (2/√3)(t/s)(s^2 -3t),
(略証)
min(a,b,c) = m とおき、{a,b,c} = {m, m+x, m+x+y} とする。(x,y≧0)
然らば、 |⊿| = xy(x+y), s = 3m+2x+y, t = 3m^2 + 2m(2x+y) + x(x+y), s^2 -3t = x^2 +xy +y^2,
∴ t(s^2 -3t) - ((√3)/2)s|⊿| = 3m^2・(x^2 +xy +y^2) + m・{4x^3 + 3(1-(√3)/2)xy(x+y) +2y^3} + x(x+y){x - ((√3 -1)/2)y}^2 ≧0,
等号成立は m=0 かつ x/y = (√3 -1)/2 のとき。
>>727
(左辺) - (右辺) = (3st+⊿)^2 - 27t^3 = 9(t^2)(s^2 -3t) +6st⊿ + ⊿^2
≧ (9-4√3)(t^2)(s^2 -3t) ≧ 0,