08/12/18 22:53:51
>>588
Q,R を >>589 のようにおくと
(判別式) = 27R^2 - 4(-Q)^3
= (q-1+2r){4q^2 +(32-4q)r -(11+q)r^2 +2r^3} >>585
= (q-1+2r){[2q - r(r+4)/4]^2 - (1/16)r(r-8)^3},
∴ r<8 には求める領域はない。
rを固定したときの q の下限および上限は
q_min = [r(r+4) - (√r)(r-8)^1.5]/8,
q_max = min{[r(r+4) + (√r)(r-8)^1.5]/8, 2r-3}
= [r(r+4) + (√r)(r-8)^1.5]/8 (8≦r≦9)
= 2r-3 (r≧9)
rが大きいほど細く鋭くなる。 (素手で触るな)
r>9 のとき q < 2r-3 = (1/6)r(r+1) -(1/6)(r-2)(r-9) < (1/6)r(r+1)
8<r<9 についても同様。