不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch697:132人目の素数さん
08/12/18 22:53:51
>>588

Q,R を >>589 のようにおくと

(判別式) = 27R^2 - 4(-Q)^3
 = (q-1+2r){4q^2 +(32-4q)r -(11+q)r^2 +2r^3}   >>585
 = (q-1+2r){[2q - r(r+4)/4]^2 - (1/16)r(r-8)^3},
∴ r<8 には求める領域はない。

 rを固定したときの q の下限および上限は
 q_min = [r(r+4) - (√r)(r-8)^1.5]/8,
 q_max = min{[r(r+4) + (√r)(r-8)^1.5]/8, 2r-3}
    = [r(r+4) + (√r)(r-8)^1.5]/8     (8≦r≦9)
    = 2r-3    (r≧9)
 rが大きいほど細く鋭くなる。    (素手で触るな)

 r>9 のとき q < 2r-3 = (1/6)r(r+1) -(1/6)(r-2)(r-9) < (1/6)r(r+1)
 8<r<9 についても同様。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch