不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch653:132人目の素数さん
08/11/18 23:56:52
〔問題202〕
任意の正の整数mに対して不等式
 |sin(a)| + |sin(2a)| + ・・・・ + |sin(ma)| > (m/2) + (1/4) - 1/|4sin(a)|.

(略証)
|sin(ka)| ≧ {sin(ka)}^2 = {1 - cos(2ka)}/2 = (1/2) - 2cos(2ka)sin(a)/(4sin(a)) = (1/2) - {sin((2k+1)a)-sin((2k-1)a)}/(4sin(a)),
k=1,2,・・・,m について和をとる。

 スレリンク(math板:202番)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch