不等式への招待 第3章at MATH不等式への招待 第3章 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト653:132人目の素数さん 08/11/18 23:56:52 〔問題202〕 任意の正の整数mに対して不等式 |sin(a)| + |sin(2a)| + ・・・・ + |sin(ma)| > (m/2) + (1/4) - 1/|4sin(a)|. (略証) |sin(ka)| ≧ {sin(ka)}^2 = {1 - cos(2ka)}/2 = (1/2) - 2cos(2ka)sin(a)/(4sin(a)) = (1/2) - {sin((2k+1)a)-sin((2k-1)a)}/(4sin(a)), k=1,2,・・・,m について和をとる。 http://science6.2ch.net/test/read.cgi/math/1220115988/202 654:132人目の素数さん 08/11/19 00:26:14 任意の正の整数mに対して不等式 |sin(a)| + |sin(2a)| + ・・・・ + |sin(ma)| < √{m[(m/2) + (1/4) + 1/|4sin(a)|]}. が成り立つ。 (略証) (左辺) ≦ √{mΣ[k=1,m] sin(ka)^2} = √{m[(m/2) - (sin((2m+1)a)-sin(a))/4sin(a) ]} 655:132人目の素数さん 08/11/19 16:36:21 なんだこのスレwwww おもすれーwwwうぇwwww 656:132人目の素数さん 08/11/19 22:37:59 >>653-654 ワイルの一様分布定理から、 〔補題〕 a/π≠整数 ならば、 (左辺)/m → (1/π)∫[0,π] sin(x)dx = 2/π. (m→∞) 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch