不等式への招待 第3章at MATH不等式への招待 第3章 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト650:132人目の素数さん 08/11/14 07:59:40 >>649 もううpせざるを得ないだろう 651:132人目の素数さん 08/11/14 10:04:11 B5サイズで50枚以上になるからなぁ…、断るッ! 652:132人目の素数さん 08/11/18 23:21:51 【(2nCn)/(n+1)】カタラン数【(2n)!/(n+1)!n!】より 64 名前:132人目の素数さん[sage] 投稿日:2008/01/03(木) 18:20:39 〔不等式064〕 C[2m,m] = (4^m)/√(mπ) * exp(-1/8m + O(1/m^3)) ~ (4^m)/√(mπ) *(1 - 1/(8m) + …), (略証) スターリングの不等式 (n +1/2)log(n) -n +(1/2)log(2π) +1/(12n) -1/(360n^3) < log(n!) < (n +1/2)log(n) -n +(1/2)log(2π) +1/(12n), を log(C[2m,m]) = log((2m)!) -2log(m!), に代入する。 (2log(2))m -(1/2)log(mπ) -1/(8m) -1/(2880m^3) < log(C[2m,m]) < (2log(2))m -(1/2)log(mπ) -1/(8m) +1/(180m^3), 65 名前:132人目の素数さん[sage] 投稿日:2008/01/20(日) 20:24:33 大学への数学1月号の宿題を解いたつわものはいる? lim[n→∞) {(1/2^(2n -1/2))*C[4n,2n]/C[2n,n]}^(2n) http://science6.2ch.net/test/read.cgi/math/1200494361/113 さくらスレ235 66 名前:スターリング[sage] 投稿日:2008/01/20(日) 20:34:06 >65 log(n!) = (n +1/2)log(n) -n +(1/2)log(2π) + 1/(12n) -1/(360n^3) +O(1/n^5), log(C[2n,n]) = log((2n)!) - 2*log(n!) = 2log(2)*n -(1/2)log(nπ) -1/(8n) +1/(192n^3) +O(1/n^5), log(与式) = -(2n -1/2)log(2) +log(C[4n,2n]) -log(C[2n,n]) = {1/(16n) -O(1/n^3)}*(2n) = (1/8) - O(1/n^2) → 1/8, (n→∞) 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch