不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch615:不等式だけの学会があるらしい
08/11/04 21:07:44
lemmma3
a1≧a2,b1≧b2 -> (a1-a2)(b1-b2)≧0 -> a1*b1+a2*b2≧a1*b2+a2*b1

TH2
任意の自然数nに対して:a1^n+a2^n+,,,+an^n≧n*a1*a2*,,,*an
証明)
n=1:a1≧a1
n=kの時成立していると仮定しn=k+1で成立する事を示す。
まず、a1≧a2≧,,,≧a(k+1)①と仮定しても一般性を失わない。

a1^(k+1)+a2^(k+1)+,,,+ak^(k+1)+a(k+1)^(k+1)
=a1^(k+1)+a2^(k+1)+,,,+ak^k*ak +a(k+1)^k*a(k+1)
≧a1^(k+1)+a2^(k+1)+,,,+ak^k*a(k+1)+a(k+1)^k*ak
=a1^(k+1)+a2^(k+1)+,,,,+a(k-1)^k*a(k-1)+ak^k*a(k+1)+a(k+1)^(k-1)*ak*a(k+1)
≧a1^(k+1)+a2^(k+1)+,,,,+a(k-1)^k*a(k+1)+ak^k*a(k+1)+a(k+1)^(k-1)*ak*a(k-1)
(ここまでの不等号は全てlemma3と①による)
,,,,
≧(a1^k+a2^k+,,,+ak^k)*a(k+1)+a1*a2*,,,*ak*a(k+1)
(,,,及び最後の不等号もlemmma3と①による。
ai^k*ai+a(k+1)^i*a(i+1)*,,,*ak*a(k+1)≧ai^k*a(k+1)+a(k+1)^(i-1)*ai*a(i+1)*,,,*ak*a(k+1)
がやはりlemmma3と①によって成立するので、この事が言える)

≧k*(a1*a2*,,,*ak)*a(k+1)+a1*a2*,,,*ak*a(k+1)
(この不等号は帰納法の仮定による)

=(k+1)*a1*a2*,,,*ak*a(k+1)

よってTH2が成立。

TH1.TH2において、Ak=ak^nと置いていけば、明らかな相加相乗平均の不等式が現れる。

という事が今年の夏、8/18だか8/19に日本の高校の教師が示された。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch