08/10/05 04:42:02
e のほうはTaylor展開の収束がやたら速いから
十数桁ならすぐ計算できる。(解析概論に例題として載ってる)
だからこの問題は要するに
π を 誤差 0.00 001/400・5 = 1/200,000,000 ・100% 程度で
上から評価せよという問題とほぼ同義。11桁くらい正しく出ればうまくいく。
2^n 角形による近似は誤差が約 1/2 倍で小さくなっていくだけだから
1 桁進むのに 3.3 回くらい掛かる。 30 回程度は計算しないといけないので
一日じゃ無理そう。じゃあ不可能なのかというとそうでもなくて
1579年にVièteが外接正 393216 角形の周長から π < 3.1415926537 を導出している。
1596-1610年にはLudolph van Ceulenが正 32212254720 ( = 60・2^29 ) 角形の周長から
32(35?) 桁まで正しく計算している。独逸では彼の業績を記念して円周率をLudolph数とも言う。
和算家の村松茂清が同じ方法で七桁正しく計算している。Archimedesから続く伝統的方法で
中国人は劉徽のalgorithmというらしい。
URLリンク(en.wikipedia.org)
# 建部賢弘は正1024角形を用いて42桁まで求めたとか書いてあるけど
# これは42桁まで正しかったんだろうか?だとするとかなり工夫を凝らした方法のはずだが。
で、もっと早く求めたいなら色んな方法があるが、
θ < (2sin θ + tan θ)/3 を使うSnell(Ludolphの弟子)の方法(1621)ってのがあって、
Huygensはこれを改良して正六角形だけで π < 3.1415926538 まで出している。
これ系を使うのが一番賢いかな。