08/09/17 00:56:06
>>522
(上) コーシーの不等式より
∫[0→1] {1+(x^2)(e^x)}dx * ∫[0→1] 1/{1+(x^2)(e^x)} dx ≧ {∫[0→1] dx}^2 = 1,
∫[0→1] {1+(x^2)(e^x)}dx = [ x + (x^2 -2x+2)(e^x) ](0→1) = e-1,
(中)
f(x) = x・log(x) とおく。
f "(x) = 1/x >0 だから、fは下に凸。
f(x) + f(y) + f(z) ≧ 3f((x+y+z)/3) = 3f(1/3) = log(1/3).
この真数をとる。