不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch350:132人目の素数さん
08/07/02 20:57:26
>>341

B.4040.
 a=tan(A/2), b=tan(B/2), c=tan(C/2)    (0<A,B,C<π)
とおく。附帯条件から
 cot((A+B+C)/2) = (1-ab-bc-ca)/(a+b+c-abc) = 0,
 A+B+C = π,
 ABCは三角形をなす。

(1) 鋭角三角形(or直角三角形)のとき
 (左辺) = cos(A) + cos(B) + cos(C) ≦ 3cos((A+B+C)/3)  (← 上に凸)
    = 3cos(π/3) = 3/2.
(2) 鈍角三角形のとき、0<A,B<π/2<C とする。
   (左辺) = cos(A) + cos(B) + cos(C) ≦ 2cos((A+B)/2) + cos(C) (← 上に凸)
    = 2sin(C/2) + cos(C) = 1 +2sin(C/2) -2sin(C/2)^2
    = √2 - 2{sin(C/2) -(1/√2)}{sin(C/2) -1 +(1/√2)} < √2  (← sin(C/2) > 1/√2)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch