不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch345:132人目の素数さん
08/06/28 21:58:18
>>341
やさしいのは・・・

B.4019.
  1/(2k+1)^2 < 1/{4k(k+1)} = 1/(4k) - 1/(4(k+1)),
 より
  (左辺) < 1/4 - 1/(4(n+1)) < 1/4.
 なお、真の極限値は (3/4)ζ(2) -1 = (3/4)(π^2)/6 -1 = (π^2)/8 -1 = 0.23370055013617・・・

B.4035. 積和公式
 2cos(kx)sin(x/2) = sin((k+1/2)x) - sin((k-1/2)x),
を使うと
 (左辺) = sin((11/2)x) / sin(x/2),
 x=(2/11)nπ,   (nは整数, 但し11の倍数を除く.)

B.4043.
 (a,b,c,d) = (1,3,5,11) (1,2,8,17)

B.4046.
 (a,b) = (169/9, 196/9)  順不同
 |a-b|=3,


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch