不等式への招待 第3章at MATH不等式への招待 第3章 - 暇つぶし2ch295:132人目の素数さん 08/02/16 22:15:57 >>277 示すべき不等式を整理すると | N | < D, を示せばよいことがわかる。ここに N = xyz + (x+y+z), D = (xy+yz+zx) +1, 問題文に (x,y,z) の絶対値は1より小さい, とある。よって D + N = (1+x)(1+y)(1+z) >0, D - N = (1-x)(1-y)(1-z) >0, 辺々掛けて D^2 - N^2 = (1-x^2)(1-y^2)(1-z^2) >0, | N | < D, 次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch