不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch166:156
07/10/29 15:55:37
>>165
おっと,
URLリンク(links.jstor.org)
をよく読むと,
 ∫_[0,1] |x f'(x)|^2 dx < 2∫_[0,1] |f(x)|^2 dx
については,「そういうf(x)が存在する」と主張しているだけでした。
存在を示すだけなら折れ線だけで大丈夫です。

つまり,この論文は間違っておらず,この論文を「不等式への招待」に転載したときに
著者が「存在」を「任意」だと取り違えてしまった,というのが実情でしょう。

>そもそも、一般にこの逆向きの不等式は無理なのでしょうかね?

難しいと思いますね。
直観的に言うと,|f(x)|がいかに小さく抑えられていたとしても,
その小さな幅の中で激しく振動しまくれば,|f'(x)|はいくらでも大きくすることができてしまいます。
逆に,|f'(x)|がある程度小さく抑えられていれば,f(x)の変動が小さいわけですから,
|f(x)|もある程度の幅しか動けなくなります。

また,[0,1]上の関数f(x)を周期1の周期関数と見てexp(2πinx)によって
フーリエ級数展開したときのフーリエ係数をc_nとすると,パーセバルの等式から
 ∫_[0,1] |f(x)|^2 dx = Σ_[n=-∞,∞] |c_n|^2
 ∫_[0,1] |f'(x)|^2 dx = (2π)^2Σ_[n=-∞,∞] n^2|c_n|^2
です。Σ|c_n|^2 と Σn^2|c_n|^2 の収束性の善し悪しを比較しても,
|f'(x)|を|f(x)|で評価することの困難さが分かると思います。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch