不等式への招待 第3章at MATH
不等式への招待 第3章 - 暇つぶし2ch150:132人目の素数さん
07/10/13 22:21:20
>149

(略解)
・n = 1 のとき
 I(1) = ∫[0,π/2] x・sin(x) dx = [ sin(x) - x・cos(x) ](x=0,π/2) = 1,
 I(2) = ∫[0,π/2] {x・sin(x)}^2 dx = π/8 + (π^3)/48 = 1.038663・・・,
ゆえ n=1 のとき成立。
・n> 1 のとき
u = ∫[0,x] x'・sin(x') dx' = sin(x) - x・cos(x) はxについて狭義の単調増加。
xの替わりにuを独立変数と考え、x・sin(x) = s(u) とおく。x・sin(x)dx = du から
 I(n) ≡ ∫[0,π/2] {x・sin(x)}^n dx = ∫[0,1] s(u)^(n-1) du,
ここで ヘルダーの不等式 により
 {∫[0,1] s(u)^n du}^((n-1)/n)・{∫[0,1] 1^n du}^(1/n) ≧ ∫[0,1] s(u)^(n-1) du,
 I(n+1)^(1/n) > I(n)^(1/(n-1)),
 I(n) > I(2)^(n-1) > 1,
から
 I(n+1) > I(n),
n> 1 のときも成立。

スレリンク(math板:637番)
東大入試作問者スレ11


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch