代数的整数論 005at MATH代数的整数論 005 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト567:Kummer ◆g2BU0D6YN2 07/07/01 14:33:39 命題 D を平方数でない有理整数で、D ≡ 1 (mod 4) とする。 χ: (Z/DZ)^* → {±1} を >>564 の準同型とする。 D ≡ 1 (mod 8) のとき χ([2]) = 1 D ≡ 5 (mod 8) のとき χ([2]) = -1 証明 1) D > 0 のとき。 χ([2]) = χ([D + 2]) = (D/D + 2) = (D + 2/D) = (2/D) = (-1)^(D^2 - 1)/8 よって D ≡ 1 (mod 8) のとき χ([2]) = 1 D ≡ 5 (mod 8) のとき χ([2]) = -1 2) D < 0 のとき。 χ([2]) = χ([-D + 2]) = (D/-D + 2) = (-1/-D + 2)(-D/-D + 2) = (-D/-D + 2) = (-D + 2/-D) = (2/-D) = (-1)^(D^2 - 1)/8 よって D ≡ 1 (mod 8) のとき χ([2]) = 1 D ≡ 5 (mod 8) のとき χ([2]) = -1 証明終 568:Kummer ◆g2BU0D6YN2 07/07/01 15:24:14 命題 D を平方数でない有理整数で、D ≡ 0, 1 (mod 4) とする。 m を D と素な奇数とする。 m が判別式 D のある原始的2次形式により固有に表現される (過去スレ4の701)ためには D が m を法として平方剰余になることが 必要十分である。 証明 m が判別式 D のある原始的2次形式により固有に表現されるなら 過去スレ4の717より D は m を法として平方剰余である。 逆に D ≡ b^2 (mod m) となる b があるとする。 m は奇数だから b が偶数なら b + m は奇数であり、 b が奇数なら b + m は偶数である。 よって D と b は偶奇が一致すると仮定してよい。 このとき D ≡ b^2 (mod 4m) となる。 b^2 - D = 4mc とする。 f(x, y) = mx^2 + bxy + cy^2 は判別式 D の2次形式で、 gcd(m, D) = 1 だから f は原始的である。 m = f(1, 0) だから m は f による固有に表現される。 証明終 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch