07/10/27 00:51:41
ちなみにVer1修正版ではL[Ω_1](ω)、L[Ω_2](Ω_1)、・・・に拡張され、
順序数ωと(ωと独立した)順序数Ω_1の関係が(Ω_1とΩ_2以降も同様)
HardyFunctionの自然数xと順序数ωの関係を
真似したものと考えていいです。
以降VerではΩ_n+1をF[ ]とΩ_nの式で有限文字数では表せない順序数としていきます。
ところでナゴヤ関数のΩ_nは非可算順序数のつもりではなく、
また>>190のΩも非可算順序数として使っていなくて、
自然数、ω、Veblen関数とψのみでは表せない関数に
(つまり、それらの要素のみでの極限として)
ψ(Ω) として使われるωの上位の順序数だけだと思います。
Ω_nの順序数列をどう定義するのかも巨大な順序数、最終的に自然数の関数を
生成するかのカギになると考えられますね。
次はΩ_1 = F[φ_ω](ω), (φ_(n+1) = F[φ_n](ω), φ_1 = Ω_1)
Ω_(a+1) = φ_ω, (φ_(n+1) = F[φ_n](Ω_a), φ_1 = Ω_a)
Ω_(a+1) = F[Ω_(a+1)](Ω_a)
と定義してみようかと思います。