06/07/24 01:17:20
ABCが等確率で(つまりそれぞれ2/3で)処刑されるものとする。
BCが処刑されるときに看守がBだと答える確率をk[0≦k≦1]とする。
そうすると、看守がBだと答えたならばAが処刑される確率pは
>>225 の式を拝借して (1-c)/{1-c+(b+c-1)k} = 1/(1+k) である。
さて、この看守がBだと答える確率kが0~1に一様に分布していると仮定して
pの平均を取ってみると
∫[k=0,1] (1/(1+k))dk = ln(2) ≒ 0.693 である。
看守に質問をする前のAが処刑される確率である2/3を越えてしまっているのだが
これはいったいどういうことなのだろうか?