1=0.999… その13.999…at MATH1=0.999… その13.999… - 暇つぶし2ch175:132人目の素数さん 06/11/05 15:20:02 >>174 lim(h→0){{f(x+h)-f(x)}/{(x+h)-x}] f(x)=x^2のとき、 lim(h→0)[(x^2+2hx+h^2)-x^2}/{(x+h)-x}] =lim(h→0){(2hx+h^2)/h} ここで、h~2は充分小さい値として、無視できる。 ∴lim(h→0){{f(x+h)-f(x)}/{(x+h)-x}]=2x 数学じゃ、どう説明してんの? 次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch