05/09/22 18:00:01
A をネーター環とし、Mを A-加群とする。
SをAの積閉集合とする。
Ass(M_S) = Ass(M) ∩ Spec(A_S) となる。
ここで、M_S は A_S-加群として考え、>>81 の同一視をしている。
証明
p ∈ Ass(M) ∩ Spec(A_S) とする。
>>93より、A-加群の単射 A/p → M がある。この像をNとする。
よって A-加群の完全列 0 → p → A → N → 0 が得られる。
>>86より、0 → p_S → A_S → N_S → 0 は完全。
よって、N_S = A_S/p(A_S) となる。
仮定より、p(A_S) ∈ Spec(A_S) である。
A-加群の完全列 0 → N → M → M/N → 0
より、A_S-加群の完全列 0 → N_S → M_S → (M/N)_S → 0
が得られる。つまり、A_S-加群の単射 A_S/p(A_S) → M_S
が存在する。よって、p(A_S) ∈ Ass(A_S) となる。
逆に、p(A_S) ∈ Ass(A_S) とする。
Ann(x/s) = p(A_S) となる、x ∈ M、s ∈ S がある。
A はネーターだから、p は有限個の生成元 a_1, ..., a_n をもつ。
(a_i/1)(x/s) = 0 だから、t(a_i)x = 0 がすべての a_i で成立つような
t ∈ S がある。よって、p = Ann(tx) となる(詳細はまかす)。
証明終