代数的整数論at MATH
代数的整数論 - 暇つぶし2ch913:208
05/11/21 14:29:49
A を可換環、E を A-次数余代数(>>911)とする。

f, g を Homgr(E, A) の同次元とする。
x ∈ E_n とし、
φ(x) = Σx_i(x)y_i
とする。

(fg)(x) = Σf(x_i)g(y_i) = g(Σf(x_i)y_i) = g(f(x)1)(x)
である。
ここで、f(x)1 : E → A(x)E = E により、
f(x)1 を射 E → E と見なしている。
f(x)1 を i(x)と書く。(i(x))f を x←f とも書く。
f(x) をベクトルの内積の記号で (x, f) と書くと、
(x←f, g) = (x, fg)
となる。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch