代数的整数論at MATH
代数的整数論 - 暇つぶし2ch883:208
05/11/17 09:33:16
>>873を以下のように訂正する。

命題
A を可換な Z-型の次数環(>>720)とする。
M と N を Z-型の A-次数加群(>>722)とする。
M が A-加群として有限生成なら Hom(M, N) = Homgr(M, N) である。

証明
x_1, ... , x_r を M の生成元で各元は同次とする。
u ∈ Hom(M, N) とし、各 i に対して u(x_i) = Σz_(i, p) とする。
ここで、z_(i, p) は u(x_i) の p + deg(x_i) 次の同次成分。
各 i に対して u_p(x_i) = z_(i, p) により、u_p ∈ Homgr(M, N)
を定義する。 u_p は同次でありその次数は p である。
u_p が well-defined であることは、
Σ(a_i)(x_i) = 0 のとき 各 p で Σ(a_i)u_p(x_i) = 0 を
確かめればよい。ここで、a_i は A の元で同次である。
これを確かめるのは読者に任せる。
M は有限生成だから u_p は有限個を除いて 0 である。
u = Σu_p だから Hom(M, N) = Homgr(M, N) である。
証明終


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch