代数的整数論at MATH
代数的整数論 - 暇つぶし2ch751:132人目の素数さん
05/11/11 13:00:42
命題
A を可換環、 M, N を A-加群とする。
L = M + N (直積)とする。
ΛL は (ΛM)(x)'(ΛN) に A-次数代数として標準的に同型となる。
ただし、(ΛM)(x)'(ΛN) の次数型は全次数 n = p + q により
Z 型と考える。

証明
標準射 f: ΛM → ΛL と g: ΛN → ΛL がある。
これは、>>750 の命題の条件を満たす。
よって、h: (ΛM)(x)'(ΛN) → ΛL が定義される。
一方、標準射 M → (ΛM)(x)'(ΛN) と N → (ΛM)(x)'(ΛN)
から、射 L → (ΛM)(x)'(ΛN) が定義される。
これは、>>747 の命題の条件を満たす。
よって、射 k: ΛL → (ΛM)(x)'(ΛN) が定義される。
h と k が互いに逆射となっていることは読者に任す。
証明終


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch