代数的整数論at MATH
代数的整数論 - 暇つぶし2ch445:208
05/10/20 12:24:43
補題
A をネーター環、
p ⊃ p_1 ⊃ ... ⊃ p_n を A の長さ n ≧ 2 の素イデアル鎖(>>379)
とする。x を p の元で、p_1 に含まれないものとする。
n - 1 個の素イデアル q_1, ... , q_(n-1) で
p ⊃ q_1 ⊃ ... ⊃ q_(n-1) ⊃ p_n が長さ n の素イデアル鎖
となり、x ∈ q_(n-1) となるものが存在する。

証明
n に関する帰納法と >>444 を使う。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch