代数的整数論at MATH
代数的整数論 - 暇つぶし2ch360:208
05/10/18 16:55:47
命題
A をネーター環、p を A の素イデアルとする。
φ: A → A_p を標準射とする。
∩p^(n) = Ker(φ) である。
ここで n はすべての正の整数を動く。

証明
∩p^(n) = ∩φ^(-1)(p^nA_p) = φ^(-1)(∩p^nA_p)
ここで、∩p^nA_p = 0 である(>>252)。
よって、∩p^(n) = φ^(-1)(0) = Ker(φ)
証明終


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch