代数的整数論at MATH
代数的整数論 - 暇つぶし2ch335:208
05/10/18 09:30:37
命題
A を局所Artin環とする。つまりただ1つの極大イデアル m をもつ
Artin環とする。m がべき零なら A は A-加群として長さ有限である。

証明
m^n = 0 とする。
A-加群の降列
A ⊃ m ⊃ m^2 ⊃ ... ⊃ m^(n-1) ⊃ m^n = 0
を考える。
0 ≦ i ≦ n-1 に対して M_i = m^i/m^(i+1) とおく。
m(M_i) = 0 だから、M_i は 体 A/m 上のベクトル空間とみなせる。
M_i の A-加群としての部分加群は、A/m 上の部分ベクトル空間でも
あり、逆も成立つ。よって補題(>>334)より M_i は A-加群として
長さ有限である。よって A も長さ有限である。
証明終


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch