05/09/27 09:38:59
>>116の命題を証明する。
命題
A を環とし、(M_i), i ∈ I をA-加群の帰納系とする。
ここで、I は有向前順序集合。
同様に、(N_j), j ∈ J をA-加群の帰納系とする。
ここで、J は有向前順序集合。このとき、
ind.lim M_i(x)N_j = (ind.lim M_i) (x) (ind.lim N_j)
となる。ここで等号は同型を表す。
(M_i(x)N_j) の添え字集合は I と J の直積に、(i, j) ≦ (i', j')
を、i ≦ i' かつ j ≦ j' と定義したものこれが有向前順序集合に
なることは明らかだろう。
証明
M = ind.lim (M_i)
N = ind.lim (N_j)
T = ind.lim M_i(x)N_j とおく。
M × N から T への写像φを以下のように定義する。
(x, y) ∈ M × N とし、x = f_i(x_i), y = g_j(y_j) とする。
ここで、x_i ∈ M_i, y_j ∈ N_j で、f_i, g_j はそれぞれ
(M_i), (N_j) の極限を定義する標準射。
φ(x, y) = h_(i,j)(x_i (x) y_j) とする。
ここで、h_(i,j): M_i(x)N_j → T は標準射。
これが、x_iとy_jの取り方によらないことと、双線形写像であること
の確認は各自にまかす。
よって、テンソル積 M (x) N の性質から、φ(x, y) = λ(x (x) y)
となる A-加群としての射 λ: M (x) N → T が存在する。
他方、 μ_(i,j) : M_i(x)N_j → M (x) N が μ_(i,j) = f_i (x) g_j
と定義して得られる。射の族 (μ_(i,j)) は帰納系 (M_i(x)N_j) から
M (x) N への射を定義する。よって、μ: T → M (x) N が得られる。
λとμが、互いに逆写像になっていることは容易にわかる。
証明終