不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch988:132人目の素数さん
05/01/21 16:40:19
【問題】 正の実数 x(k,j)、自然数 m, n に対して、次式を示せ。
 [x(1,1)^n + … + x(1,m)^n]…[x(n,1)^n + … + x(n,m)^n] ≧ [x(1,1)…x(n,1) + … + x(n,1)…x(n,m)]^n

うまく証明できません。たのも~。
>>951(7) は、m=2、x(n,1)^n=1、x(n,2)^n=a_ の場合になりますよね?
どっかで見たことあると思ったら、これだったか…。

発掘元
URLリンク(user.ecc.u-tokyo.ac.jp)の8ページ目

989:132人目の素数さん
05/01/21 22:30:16
>980
 相加・相乗平均により
 {k・a^(n-1) + (n-1-k)・b^(n-1)} / (n-1) ≧ a^k・b^(n-1-k).
 これを k=0~n-1 について加えて(1/2)を掛けると
 (n/2)[a^(n-1) +b^(n-1)] ≧ a^(n-1) +a^(n-2)b + …… +ab^(n-2) +b^(n-1) = (a^n -b^n)/(a-b).


>988
 ●知られざる(?)コーシー・シュワルツの拡張形●
 nについての帰納法による。
 n=1のときは 明らか。
 n=2のときは "コーシー・シュワルツの不等式になりますね。"
 nが偶数のとき、 n/2 について成立ち、また2についても成立つことから……
 nが奇数のとき、 n+1 については成立つ。これを
  X(k,i)= x(k,i)^{n/(n+1)} (1≦k≦n), X(n+1,i)={x(1,i)x(2,i)…x(n,i)}^{1/(n+1)}
 に適用すると、与式の両辺に (右辺)^(1/n) を掛けた式が……
ぬるぽ

990:132人目の素数さん
05/01/21 23:45:56
相加相乗でも解けるね

991:132人目の素数さん
05/01/22 03:32:58
>>989
さすが、いつもながら グッジョブ!です。

>>990
詳細キボンヌ。

992:132人目の素数さん
05/01/22 03:59:57
>>988-989
Cauchyの不等式って積分に拡張したSchwarzの不等式があるよね。
「知られざる(?)コーシー・シュワルツの拡張形」 も、積分に拡張できるでしょうか?
> 正の実数 x(k,j)、自然数 m, n に対して、
> [x(1,1)^n + … + x(1,m)^n]…[x(n,1)^n + … + x(n,m)^n] ≧ [x(1,1)…x(n,1) + … + x(n,1)…x(n,m)]^n

もし出来るとしたら、こんな感じですか?

【予想】
区間 [a, b] で連続な実関数 f_1, …, _m に対して
 [∫[a, b](f_1(x))^n dx]…[∫[a, b](f_m(x))^n dx] ≧ [∫[a, b]f_1(x)…f_m(x) dx]^n

993:132人目の素数さん
05/01/22 04:30:50
>>992
【Schwarzの不等式】
区間 [a, b] で連続な実関数 f, g に対して
 [∫[a, b]f(x)^2 dx]…[∫[a, b]g(x)^2 dx] ≧ [∫[a, b]f(x)g(x) dx]^2
(証明)
任意の実数 t に対して ∫[a,b](tf(x)+g(x))^2 dx ≧ 0 … (☆)
展開して (t^2)∫[a,b](f(x))^2 dx + 2t∫[a,b]f(x)g(x) dx + ∫[a,b](g(x))^2 dx ≧ 0

∫[a,b](f(x))^2 dx>0 のとき、上式の左辺の判別式 D≦0 より、示すべき不等式を得る。
等号は D=0 のときで、このとき (☆) は あるt=cにおいて ∫[a,b](cf(x)+g(x))^2 dx=0
となるから、区間 [a, b] でcf(x)+g(x)=0

∫[a,b](f(x))^2 dx=0 のとき、区間 [a, b] で f(x)=0 より、示すべき不等式で等号が成り立つ。
(このとき、f(x) = 0×g(x) と書ける)

等号成立条件は、f, g の一方が他方の定数倍のとき。

994:132人目の素数さん
05/01/22 04:32:18
>>992
その予想は、993の方法では難しそうでつね。
そもそも成り立つかどうか知らないし…。
( ゚∀゚) テヘッ

995:132人目の素数さん
05/01/22 04:34:40
>>989
●知られざる(?)コーシー・シュワルツの拡張形● の等号成立条件は、どうなるのでしょうか?

996:132人目の素数さん
05/01/22 05:04:22
>>980
> 自然数 n≧2 と a>b>0 に対して、(n/2)(a-b)[a^(n-1)-b^(n-1)] > a^n-b^n

(別解1)
x>0、n≧2 において y=x^(n-1) は下に凸だから、
区間 [b, a] において、この間数とx軸で囲まれる部分の面積を考えて
 (台形)≧ ∫[b, a]x^(n-1)dx
 (1/2)(a-b)[a^(n-1)-b^(n-1)] > (a^n-b^n)/n

997:132人目の素数さん
05/01/22 05:18:16
(別解2)
a/b = t (>1) とおくと、示すべき不等式は
 (n/2)(t-1)(t^(n-1)-1) > t^n -1 …(☆)
これを示そう。
 f(t) = n(t-1)(t^(n-1)-1) -2(t^n -1)
 f'(t) = n(n-2)t^(n-1) -n(n-1)t^(n-2) +n
 f''(t) = n(n-1)(n-2)t^(n-3)(t-1)
t>1 において f''(t)>0、f'(1)=0 より、f'(t)>0 だから fは単調増加
 f(t)>f(1)=0

998:不等式ヲタ
05/01/22 05:19:29
このスレが、ここまで盛り上がったのも皆さんのおかげです。
きっと>>1も草葉の陰で喜んでいることでしょう。
次スレもよろしくお願いします。
…と、なんとなく締めくくってみる。
   ___
 ./  ≧ \
 |::::  \ ./ |
 |::::: (● (● | グッジョブ!
 ヽ::::... .ワ....ノ    n  
 ̄ ̄   \    ( E)
フ     /ヽ ヽ_//

999:132人目の素数さん
05/01/22 05:22:48
次スレ

不等式への招待 第2章
スレリンク(math板)l50

1000:132人目の素数さん
05/01/22 05:24:02
1000<10000

1001:1001
Over 1000 Thread
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch