不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch913:132人目の素数さん
05/01/14 11:34:52
[912] の一般化
【補題】 H(a_1, a_2, ・・・・,a_n)+ H(b_1, b_2, ・・・・,b_n)≦ H(a_1+b_1, a_2+b_2, ・・・・, a_n+b_n))
(略証) nについての帰納法による。
n=1 のとき 明らか。
n=2 のとき [647](6) より成立。
nが偶数のとき、n=2m とおく。
 H(a_1,a_2,・・・・・, a_{2m}) = H(H(a_1,a_2,・・・・,a_m), H(a_{m+1}, ・・・・, a_{2m})) を使うと
 左辺 = H(H(a_1, a_2, ・・・・,a_m), H(a_{m+1}, ・・・・, a_n))+ H(H(b_1, b_2, ・・・・,b_m), H(b_{m+1}, ・・・・, b_n))
 ≦ H(H(a_1, a_2, ・・・・,a_m) + H(b_1, b_2, ・・・・,b_m), H(a_{m+1}, ・・・・, a_n}) + H(b_{m+1}, ・・・・, b_n}))
 帰納法の仮定により、
 左辺 ≦ H(H(a_1+b_1, a_2+b_2, ・・・・,a_m+b_m), H(a_{m+1}+b_{m+1}, ・・・・, a_n+b_n))
 =H(a_1+b_1, a_2+b_2, ・・・・, a_n+b_n)。
nが奇数のとき
 上記により n+1 に対しては成立つ。そこで a_{n+1}→∞, b_{n+1}→∞ として n/(n+1) を掛ければ出る。

(系) H(a_1 +1,a_2 +1,・・・・,a_n +1)≧ H(a_1, a_2, ・・・・, a_n)+ H(1,1,・・・,1)= H(a_1, a_2, ・・・・, a_n)+1.

>812  [>>647(6)] は H(a+c,b+d) ≧ H(a,b) + H(c,d).


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch