不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch845:132人目の素数さん
04/12/29 17:43:30
>836
 z≒0 の場合を考えるんだろうな。
 与式 = (x^3 +y^3)/|xy(x-y)| ≧ c, 但し c≡(1+√3)・√{(3/2)√3} = 4.4036694750416・・・・・
 (略証) (x^3 +y^3)^2 - [cxy(x-y)]^2 = [x^2 -(1+√3)xy +y^2]^2 [x^2 +2(1+√3)xy +y^2] ≧0.
   等号成立は [x^2 -(1+√3)xy +y^2]=0 すなわち x/y ={(1+√3)±√(2√3)}/2 のとき.
 となるはずの所だが、本題は z>0 なので等号は成田たね.

>842
 スレ違いかも知れんが、
 内部には極値は無さそうだから、平行四辺形の周を調べるんだろうな。
 (x,y)=(1+√(1/3), -1+√(1/3)) で最小値 -2/(3√3) = -0.38490017945975・・・・
 (x,y)=(2,2) で最大値 12.
ぬるぽ


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch