不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch738:132人目の素数さん
04/12/08 03:43:30
>>736-737 ありがとうございます。やってみます


>>680
>>647(4)の解答の右側の証明についてですが、チェビシェフの不等式より
  3(x+y+z) ≧ {(a+x)+(a+y)+(a+z)}・{x/(a+x) + y/(a+y) + z/(a+z)}
展開して整理すると
  2(x+y+z) ≧ {(a+z)・x/(a+x) + (a+x)・y/(a+y) + (a+y)・z/(a+z)} + {(a+y)・x/(a+x) + (a+z)・y/(a+y) + (a+x)・z/(a+z)}
となるから、「右辺第2項 ≧ 右辺第1項」 を示せば
  2(x+y+z) ≧ 2(右辺第1項) … (★)
となって完成ですよね。(発掘元の問題が誤植ですが…)

そこで (★) を証明したいのですが、これはどうするのでしょうか? 


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch