不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch689:132人目の素数さん
04/11/24 22:20:55
>679 >>647(5) の類題
[2003 Baltic Way] URLリンク(www.liis.lv)

正の数 a, b, c に対し、
 A = a/(bc) + b/(ca) + c/(ab)
 B = 1/a + 1/b + 1/c
 C = 1/√(ab) + 1/√(bc) + 1/√(ca)
 D = 2a/(a^2+bc) + 2b/(b^2+ca) + 2c/(c^2+ab)
 E = 3/\sqrt[3](abc)
 F = 2/(a+b) + 2/(b+c) + 2/(c+a)
 G = 6/\sqrt[3]{(a+b)(b+c)(c+a)}
 H = 9/(a+b+c)
とおくと
 A ≧ B ≧ C ≧ D
 C ≧ (E, F) ≧ G ≧ H
E, Fの大小は定まらない。(a, b, c) = (1, 1, 27), (1, 1, 1), (1, 1, 8) のとき、≧、=、≦。
    ___
  ./  ≧ \  
  |::::  \ ./ |    D と (E, F) ≧ G ≧ H は
  |::::: (● (● |        ドッキングできないですか?
  ヽ::::.... ワ ....ノ /  チン ☆    たのも~
 _(  ⊃  ⊃  チン ☆        たのも~
 |\ ̄ ̄ ̄ ̄旦 ̄\
 | | ̄ ̄ ̄ ̄ ̄ ̄ ̄|
 \|  愛媛みかん |
    ̄ ̄ ̄ ̄ ̄ ̄ ̄


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch