04/11/09 12:07:48
>>564 (3)
a,b,cの符号によらないから、a,b,c ≧0 の場合を考える。 与式を X+Y+Z とおくと、
最大値: X+Y+Z ≦ √{3(X^2 +Y^2 +Z^2)} = √{3(p^2+q^2+r^2)(a^2+b^2+c^2)}
= √{3(p^2+q^2+r^2)}.
最小値: X≧(pa+qb+rc)/(√3), Y≧(pb+qc+ra)/(√3), Z≧(pc+qa+rb)/(√3).
辺々たすと X+Y+Z ≧ (p+q+r)(a+b+c)/(√3) ≧ (p+q+r)/(√3).
>612
相加・相乗平均により、(2a^3 +c^3)/3 + (ab)^2/c ≧ (a^2)[c +(b^2)/c] ≧ 2(a^2)b.
循環的に加える。 ぬるぽ