04/11/03 22:02:49
>>558,566 の別証明。
【補題】A+B+C=π, 0<A,B,C<π のとき、
cos(A)cos(B)cos(C) ≦ [1-cos(A)][1-cos(B)][1-cos(C)] ≦ 1/8.
(略証) 1-cos(x) = 2{sin(x/2)}^2 に注意.
(右側): sin(x) は(0,π)で上に凸だから、
sin(A/2)sin(B/2)sin(C/2) ≦ {(1/3)[sin(A/2)+sin(B/2)+sin(C/2)]}^3 ≦ {sin[(A+B+C)/3]}^3
= {sin(π/3)}^3 = (1/2)^3 = 1/8.
これを2乗して8倍する。
(左側): 左辺 = cos(A)cos(B)cos(C) = -cos(A)cos(B)cos(A+B) = {sin(A)sin(B)-cos(C)}cos(C).
中辺 - 左辺 = [1-cos(A)][1-cos(B)] - {[1-cos(A)][1-cos(B)]+sin(A)sin(B)}・cos(C) + [cos(C)]^2
= [1-cos(A)][1-cos(B)] - 2√{[1-cos(A)][1-cos(B)]}・cos[(A-B)/2]・cos(C) + [cos(C)]^2
= X^2 -2XY・cos(θ) +Y^2 = |X-Y|^2 + 2XY[1-cos(θ)] ≧ 0.
(鈍角三角形のときは 左辺<0 より自明....)
ぬるぽ