不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch580:132人目の素数さん
04/11/03 22:02:49
>>558,566 の別証明。

【補題】A+B+C=π, 0<A,B,C<π のとき、
 cos(A)cos(B)cos(C) ≦ [1-cos(A)][1-cos(B)][1-cos(C)] ≦ 1/8.

(略証) 1-cos(x) = 2{sin(x/2)}^2 に注意.
 (右側): sin(x) は(0,π)で上に凸だから、
  sin(A/2)sin(B/2)sin(C/2) ≦ {(1/3)[sin(A/2)+sin(B/2)+sin(C/2)]}^3 ≦ {sin[(A+B+C)/3]}^3
  = {sin(π/3)}^3 = (1/2)^3 = 1/8.
  これを2乗して8倍する。
 (左側): 左辺 = cos(A)cos(B)cos(C) = -cos(A)cos(B)cos(A+B) = {sin(A)sin(B)-cos(C)}cos(C).
  中辺 - 左辺 = [1-cos(A)][1-cos(B)] - {[1-cos(A)][1-cos(B)]+sin(A)sin(B)}・cos(C) + [cos(C)]^2
  = [1-cos(A)][1-cos(B)] - 2√{[1-cos(A)][1-cos(B)]}・cos[(A-B)/2]・cos(C) + [cos(C)]^2
  = X^2 -2XY・cos(θ) +Y^2 = |X-Y|^2 + 2XY[1-cos(θ)] ≧ 0.
  (鈍角三角形のときは 左辺<0 より自明....)
ぬるぽ


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch