04/10/31 11:19:34
>>519 (2)
[544]の続き。 a=cot(A), b=cot(B), c=cot(C), 0<A,B,C<π/2.
A+B+C=π より
左辺 = (1/2){sin(2A)+sin(2B)+sin(2C)} = 2sin(A)sin(B)sin(C).
右辺 = (1/2){sin(4A)+sin(4B)+sin(2C)} = 2sin(2A)sin(2B)sin(2C).
右辺/左辺 = 8cos(A)cos(B)cos(C)
f(x)=cos(x) は [0,π/2) で正で上に凸なので、log|cos(x)| も上に凸(∵補題)
∴ 8cos(A)cos(B)cos(C) < 8{cos[(A+B+C)/3]}^3 = {2cos(π/3)}^3 = 1.
【補題】f(x)≧0 が上に凸ならば log|f(x)| も上に凸。
(略証){log|f(X)|} " = (f '/f) ' = {(ff " -(f ')^2}/(f^2) <0
[519] の解答のレス番(主なもの)
(1) 540 (2) 544+556 (3)~(7) 530 (8),(9) 524
ぬるぽ