04/07/22 08:48
>299
ありがとうございます。あと2式のとりうる値について、凸不等式から
0 < sin(A)+sin(B)+sin(C) < 3sqrt(3)/2
sin(A/2)+sin(B/2)+sin(C/2) < 3/2
となりましたが、下側の式の最小値がうまくでません。
1/2のようなのですが、証明のしかたを教えて下さい。
301:132人目の素数さん
04/07/22 09:03
書き間違い…
0 < sin(A)+sin(B)+sin(C) ≦ 3sqrt(3)/2
sin(A/2)+sin(B/2)+sin(C/2) ≦ 3/2
302:132人目の素数さん
04/07/22 12:07
>300
1 < sin(A/2)+sin(B/2)+sin(C/2) ≦ 3/2.
0 < {sin(A)+sin(B)+sin(C)} / {sin(A/2)+sin(B/2)+sin(C/2)} ≦ √3.
303:132人目の素数さん
04/07/22 13:11
>302
ありがとうございます。神キタ━(゚∀゚)━!!!
1行目の式の下限が1になるのは、どのような計算でしょうか?
2行目の不等式を考えてますが、
sin(A)+sin(B)+sin(C) = 4cos(A/2)cos(B/2)cos(C/2)
sin(A/2)+sin(B/2)+sin(C/2) = 4cos(A/4)cos(B/4)cos(C/4)
ここまで変形して、辺々割ってみたんですけど、その後が…
もう少し考えてみますが、よければヒント下さい。
304:132人目の素数さん
04/07/22 19:09
>303
sin(A/2) + sin(B/2) + sin(C/2) = 4cos{(π+A)/4}・cos{(π+B)/4}・cos{(π+C)/4} +1
ぢゃないか??
305:132人目の素数さん
04/07/22 22:54
>304
ほんとだ間違ってる、ありがとうございます
306:132人目の素数さん
04/07/23 07:36
telescopic 不等式
307:132人目の素数さん
04/07/29 07:24
任意の自然数 m,n と任意の正の数 x に対して
{(x+m)/(n+m)}^(n+m) ≧ (x/n)^n
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● | ハァハァ
ヽ::::... .ワ....ノ
308:132人目の素数さん
04/07/29 07:59
一般化して、正の数 a,b,c に対して
{(a+c)/(b+c)}^(b+c) ≧ (a/b)^b
が言えそうですね、ハァハァ。
309:132人目の素数さん
04/08/01 17:38
>307
平均値の定理(コーシー)より、
{Ln(x+m)-Ln(n+m)}/{Ln(x)-Ln(n)} = {1/(ξ+m)}/{1/ξ} = ξ/(ξ+m).
ところで、ξはxとnの中間の点だから、(ξ-n)(x-n) >0, (ξ-n){Ln(x)-Ln(n)} >0.
∴ (n+m){Ln(x+m)-Ln(n+m)} - n{Ln(x)-Ln(n)} = {(n+m)ξ/(ξ+m)-n}{Ln(x)-Ln(n)}
= {m/(ξ+m)}(ξ-n){Ln(x)-Ln(n)} ≧ 0.
∴ (n+m)・Ln{(x+m)/(n+m)} ≧ n・Ln(x/n).
微分法を使わない方法きぼんぬ
310:132人目の素数さん
04/08/01 18:13
>307
Ln(x)/(x-1)>0 は単調減少だから
{Ln(z)/(z-1) - Ln(y)/(y-1)}(y-z) >0.
これに z=1+a/(n+m), y=1+a/n を代入して、{(n+m)・Ln[1+a/(n+m)]-n・Ln[1+a/n]}/{n(n+m)} ≧0.
∴ (n+m)・Ln{1+a/(n+m)} ≧ n・Ln(1+a/n).
ここで a=x-n とおく。
311:132人目の素数さん
04/08/01 18:35
>309
>微分法を使わない方法きぼんぬ
___
./ ≧ \
|:::: \ ./ | 相加相乗でハァハァと…
|::::: (● (● |
ヽ::::... .ワ....ノ
312:309
04/08/02 02:16
>311
thanx. x/n がn個と1がm個でつね。
【系】
(1+a/n)^n はnについて単調増加(極限はe^a)
[略証] 相加相乗ハァハァと・・・ 1+a/n がn個、1が1個。
313:132人目の素数さん
04/08/04 01:33
314:132人目の素数さん
04/08/04 04:33
>312 【系】 (*゚∀゚)=3 ハァハァ
315:132人目の素数さん
04/08/07 19:43
掘り出し物
任意の実数 x,y,z に対して、次式をみたすMの最小値を求めよ。
√(x^2+y^2)+2√(y^2+z^2)+3√(z^2+x^2) ≦ M√(x^2+y^2+z^2)
316:132人目の素数さん
04/08/07 23:39
2√7
317:132人目の素数さん
04/08/08 00:18
>>315
ワロタ。
318:132人目の素数さん
04/08/08 04:30
>316
ハズレ
319:132人目の素数さん
04/08/08 04:49
M=3+√5
320:132人目の素数さん
04/08/08 04:54
>319
どないすんねん?
321:132人目の素数さん
04/08/08 04:58
おらおら!
322:132人目の素数さん
04/08/08 06:23
| _,.. -‐"/ ̄/ /|  ̄ l ヽ \~`"'ー、ノ たのも~♪
ケフ" / / ,.-'‐ ̄/ .i .i  ̄\- \ \ヾ
/ /.l l l .// / ./ l / ヾ iヽ i.\ たのも~♪
ノ | l l l Y /"¨''ヽ .i / ァ''"¨ヾ i イ゙i. リ
`ヽ r、 丶l i` レ | イ/"
\ ヽ ヽ """ iー'ーv' """ / '
ヽ ヾ- ゝ ._/ ./
/''"" \Y.': ∧∧ ∧∧ソ `"ヽ、
,ィ" ,.ィ."ヽ(=゚ω゚)人(゚ω゚=)ノ`丶,”、
/" ヾ,.-" ~( x)、 /(x )~ `丶、
/ /" \⊃U U y U U⊂/ ヽ
323:132人目の素数さん
04/08/08 07:39
>316 の失敗は、シュワルツの不等式でやったんだろうな。
正解は >319 だが、どうやるのかにゃ?
324:132人目の素数さん
04/08/08 09:18
y=0 のときだと見破れば簡単
325:132人目の素数さん
04/08/08 10:57
見破るって…、それでいいのか?
ちゃんとした証明をキボンヌ
326:132人目の素数さん
04/08/09 01:27
普通に束縛条件x^2+y^2+z^2=1を設定して左辺の
x>0,y>0z>0での最小値と
x=0,y,z≧0、y=0,z,x≧0、z=0,x,y≧0での最小値をくらべればいいんじゃないの?
327:132人目の素数さん
04/08/09 01:32
>>326
>x>0,y>0z>0での最小値と
↑これ極値ね。最小値であることまで示す必要はない。
・コンパクト領域x,y,z≧0、x^2+y^2+z^2=1のどこかで最小値をとる。
・内点で最小ならそれは極値である。
から境界での最小値と内点での極値のうちいちばん小さいのが最小値。
↑この論法でどんどん変数の次元をさげていくのが一般的な未定定数法の使い方だな。
328:132人目の素数さん
04/08/10 02:05
なるほど。
329:132人目の素数さん
04/08/10 20:06
>325
x^2=X, y^2=Y, z^2=Z, λ>0, μ=√(1+λ^2) とおく。
コーシーの不等式より、√(X+Y) + λ√(Y+Z) ≦ μ√(X+2Y+Z) ・・・・・ (1)
ルートは上に凸だから、 √(X+2Y+Z) + √(X+Z) ≦ 2√(X+Y+Z) ・・・・・ (2)
∴ √(X+Y) + λ√(Y+Z) + μ√(X+Z) ≦ 2μ√(X+Y+Z).
これに、√(X+Z) ≦ √(X+Y+Z) ・・・・・(3) の(3-μ)倍を加える。
等号成立は (x,y,z)=x(1,0,λ) のとき.
ぬるぽ
330:329
04/08/11 00:00
【類題】
λ≧0とする。 任意の負でない実数 X,Y,Z≧0 に対して次式をみたすM
の最小値M(λ)を求めてくださいです。。。
√(X+Y) + λ・√(Y+Z) + (λ+1)・√(X+Z) ≦ M・√(X+Y+Z)
ぬるぽ
331:132人目の素数さん
04/08/11 08:38
>330
μ=√(1+λ^2) とおく。
コーシーの不等式より、√(X+Y) + λ√(Y+Z) + μ√(Z+X) ≦ √(1+λ^2 +μ^2)・√{2(X+Y+Z)} = 2μ√(X+Y+Z).
∴ M(λ) = 1+λ+√(1+λ^2).
332:132人目の素数さん
04/08/11 09:04
(゚Д゚ )ハァ?
333:132人目の素数さん
04/08/11 09:17
>316のようにコーシーの不等式を使って、
とりえない解を出した前例があるッ!
気をつけろッ!
334:331
04/08/11 11:43
(X,Y,Z)=X(1,0,λ^2) で等号成立でつ。。。
335:331
04/08/11 21:03
>332
√(Z+X) ≦ √(X+Y+Z)
の(1+λ-μ)倍を [331]の式 に加えれ。
336:132人目の素数さん
04/08/17 15:04
>331
理解したッ!
君は英雄だ、最大の功績だ!
337:132人目の素数さん
04/08/17 16:27
コーシー・シュワルツの不等式を、ロシアでは
コーシー・ブニャコフスキーの不等式という。
北朝鮮ではなんと言うのだろうか?
金日成の不等式?
338:132人目の素数さん
04/08/20 17:20
暑いのぉ…
(a+b+c+d)^2 ≧ 8(ac+bd) が成り立つための実数 a,b,c,d の条件を求めよ。
339:132人目の素数さん
04/08/21 04:37
正の数 a,b,c が a^2+b^2+c^2=1 をみたすとき、次式を証明せよ。
(a^2)bc + a(b^2)c + ab(c^2) ≦ 1/3
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● | オラオラ
ヽ::::... .ワ....ノ
340:132人目の素数さん
04/08/21 10:15
>339
左辺 = (a^2)bc + a(b^2)c + ab(c^2) = (a+b+c)abc
= (1/27)(a+b+c){(a+b+c)^3 -3a(b-c)^2 -3b(c-a)^2 -3(a-b)^2} ≦ (1/27)(a+b+c)^4,
(a+b+c)^2 = 3(a^2+b^2+c^2) -(b-c)^2 -(c-a)^2 -(a-b)^2 ≦ 3(a^2+b^2+c^2).
341:340
04/08/21 11:38
>339
a^2=A, b^2=B, c^2=C とおく。
左辺 = A{B+C-(b-c)^2}/2 + B{C+A-(c-a)^2}/2 + C{A+B-(a-b)^2}/2
≦ BC + CA + AB = (1/6){2(A+B+C)^2 -(B-C)^2 -(C-A)^2 -(A-B)^2}
≦ (1/3)(A+B+C)^2.
等号成立はA=B=C すなわち a=b=c.
342:132人目の素数さん
04/08/21 15:32
しょうも無い不等式やな。
343:132人目の素数さん
04/08/21 17:53
>338
0 ≦ (a+b+c+d)^2 -8(ac+bd) = (a+b-c-d)^2 +(a-b-c+d)^2 -(a-b+c-d)^2.
ぬるぽ
344:132人目の素数さん
04/08/21 20:52
ハァ?
345:132人目の素数さん
04/08/21 21:33
正の数 a,b,c に対して、次を示せ。
(a^3-a^2+3)(b^3-b^2+3)(c^3-c^2+3) ≧ (a+b+c)^3
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● | オラオラオラ…
ヽ::::... .ワ....ノ
346:凡例
04/08/21 23:08
>345
a=b=c の場合を考える。
1<t<√3 ⇒ (t^3 -t^2 +3) - 3t = (t-1)(t^2 -3) < 0.
347:132人目の素数さん
04/08/22 01:28
>346
不等式の証明をしたことがありますか?
348:反例
04/08/22 01:34
を挙げますた。証明できんと思われ。 >347
349:132人目の素数さん
04/08/22 05:49
>345
問題文が違っていると思われ…
確認して切腹せよ!
350:132人目の素数さん
04/08/22 05:53
チンチン! チンチン! (AA省略)
問題文の訂正と、切腹まだあー
351:340
04/08/22 15:16
>339
abc = (1/27){(a+b+c)^3 -(3a+s)(b-c)^2 -(3b+s)(c-a)^2 -(3c+s)(a-b)^2} ≦ (1/27)(a+b+c)^3.
s = (a+b+c)/2.
すみません、間違ってました。
死んでお詫びを…
∧_∧
(´Д` )
/ y/ ヽ
Σ(m)二フ ⊂[_ノ
(ノノノ | | | l )
352:345の訂正
04/08/22 18:56
アチャー、間違ってました。5乗でした…
正の数 a,b,c に対して、次を示せ。
(a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) ≧ (a+b+c)^3
∧_∧ 死んでお詫びを…
_ _ ξ (´Д` )
(´ `ヽ、>>340 / y/ ヽ >>345
⊂,_と( )⊃ Σ(m)二フ ⊂[_ノ
(ノノノ | | | l )
353:132人目の素数さん
04/08/24 02:40
||
||---
||
||---
||
||
||
||
|| 電柱でござる、電柱でござるぞ。 >351-352
354:132人目の素数さん
04/08/25 16:16
任意の複素数 x,y,z に対して
|x|+|y|+|z|+|x+y+z| ≧ |x+y|+|y+z|+|z+x|
___
./ ≧ \
|:::: \ ./ | 懲りずに
|::::: (● (● | ハァハァ
ヽ::::... .ワ....ノ
355:132人目の素数さん
04/08/25 23:08
| _,.. -‐"/ ̄/ /|  ̄ l ヽ \~`"'ー、ノ たのも~♪
ケフ" / / ,.-'‐ ̄/ .i .i  ̄\- \ \ヾ
/ /.l l l .// / ./ l / ヾ iヽ i.\ たのも~♪
ノ | l l l Y /"¨''ヽ .i / ァ''"¨ヾ i イ゙i. リ
`ヽ r、 丶l i` レ | イ/"
\ ヽ ヽ """ iー'ーv' """ / '
ヽ ヾ- ゝ ._/ ./
/''"" \Y.': ∧∧ ∧∧ソ `"ヽ、
,ィ" ,.ィ."ヽ(=゚ω゚)人(゚ω゚=)ノ`丶,”、
/" ヾ,.-" ~( x)、 /(x )~ `丶、
/ /" \⊃U U y U U⊂/ ヽ
356:132人目の素数さん
04/08/26 01:24
___
./ ≧ \ 神降臨まだぁ~
|:::: \ ./ | ハァハァ
|::::: (● (● |
ヽ::::... .∀....ノ / チン ☆
_( ⊃ ⊃ チン ☆
|\ ̄ ̄ ̄ ̄旦 ̄\
| | ̄ ̄ ̄ ̄ ̄ ̄ ̄|
\| 愛媛みかん |
357:132人目の素数さん
04/08/26 13:48
>354
Hlawkaの不等式.
x+y+z=-w, 左辺=|x|+|y|+|z|+|w|=S とおく。
|x+y|=|z+w|, |x+z|=|y+w|, |x+w|=|y+z| ・・・・・・(1)
0 = |x+y+z+w|^2
= (|x+y|^2 +|z+w|^2) +(|x+z|^2 +|y+w|^2) +(|x+w|^2 +|y+z|^2) -2(|x|^2 +|y|^2 +|z|^2 +|w|^2).
∴ S^2 = (|x|^2 +|y|^2 +|z|^2 +|w|^2) + 2{|x||y|+|x||z|+|x||w|+|y||z|+|y||w|+|z||w|}
= (1/2){|x+y|^2 +|z+w|^2 +|x+z|^2 +|y+w|^2 +|x+w|^2 +|y+z|^2}
+2{|x||y|+|x||z|+|x||w|+|y||z|+|y||w|+|z||w|}
= |x+y||z+w| +|x+z||y+w| +|x+w||y+z| +2{|x||y|+|x||z|+|x||w|+|y||z|+|y||w|+|z||w|}
= |x+y||z+w| +(|x|+|y|)(|z|+|w|)
+|x+z||y+w| +(|x|+|z|)(|y|+|w|)
+|x+w||y+z| +(|x|+|w|)(|y|+|z|) ・・・・・・・(2)
(1),(2)により、
S・{S -(|x-y|+|x+z|+|x+w|+|y+z|+|y+w|+|z+w|)/2}
= S^2 -S(|x+y|+|z+w|)/2 -S(|x+z|+|y+w|)/2 -S(|x+w|+|y+z|)/2
= |x+y||z+w| +(|x|+|y|)(|z|+|w|) +|x+z||y+w| +(|x|+|z|)(|y|+|w|) +|x+w||y+z| +(|x|+|w|)(|y|+|z|)
-(|z|+|w|)|x+y| -(|x|+|y|)|z+w| -(|y|+|w|)|x+z| -(|x|+|z|)|y+w| -(|y|+|z|)|x+w| -(|x|+|w|)|y+z|)}
= {|x|+|y|-|x+y|)(|z|+|w|-|z+w|) +(|x|+|z|-|x+z|)(|y|+|w|-|y+w|) +(|x|+|w|-|x+w|)(|y|+|z|-|y+z|) ≧0.
∴ S - (1/2)(|x+y|+|x+z|+|x+w|+|y+z|+|y+w|+|z+w|) ≧0.
大関:「不等式への招待」例題8, p.33 近代科学社 (1987.10) ¥1575
153p, A5判, ISBN:4764910063
358:132人目の素数さん
04/08/26 15:16
お~!
そんなところにありましたか
ありがとうございます。
359:357
04/08/26 21:39
(補足)
0 = |x+y+z+w|^2 = (x+y+z+w, x+y+z+w)
= |x|^2 +|y|^2 +|z|^2 +|w|^2 +2{(x,y)+(x,z)+(x,w)+(y,z)+(y,w)+(z,w)}
= |x+y|^2 +|z+w|^2 +|x+z|^2 +|y+w|^2 +|x+w|^2 +|y+z|^2 -2(|x|^2 +|y|^2 +|z|^2 +|w|^2).
360:132人目の素数さん
04/08/27 11:48
【問題】(D.D.Adamovic)
m>2, Σ[k=1,m] x_k↑ = 0↑ のとき、
1). (m-2) Σ[k=1,m] |x_k|^2 = Σ[1≦i<j≦m] |x_i +x_j|^2.
2). (m-2) Σ[k=1,m] |x_k| ≧ Σ[1≦i<j≦m] |x_i +x_j|.
を示してくださいです。。。
361:132人目の素数さん
04/08/29 17:33
>352
F(x) = x^5 -x^2 +3 ≧ F{(2/5)^(1/3)} = 3 - (3/5)[(2/5)^(2/3)] = 2.67426989 ≡ f.
次の補題を基にして評価する。
【補題】
F(a)F(b)F(c) ≧ 27abc + (1-a)^2 [(f^2)a + (9f/2)(b+c)]
+ (1-b)^2 [(f^2)b + (9f/2)(c+a)] + (1-c)^2 [(f^2)c + (9f/2)(a+b)].
(1-a)^2 + (1-b)^2 = (1/2)(a-b)^2 + (1/2)(2-a-b)^2 ≧ (1/2)(a-b)^2 を使って変形すると、
F(a)F(b)F(c) ≧ 27abc + (a-b)^2 {[9f/4 -(f/2)^2]c + (f/2)^2(a+b)}
+ (b-c)^2{[9f/4 -(f/2)^2]a + (f/2)^2(b+c)} + (c-a)^2 {[9f/4 -(f/2)^2)b + (f/2)^2(c+a)}
≧ 27abc + (a-b)^2 (a+b+7c)/2 + (b-c)^2 (7a+b+c)/2 + (c-a)^2 (a+7b+c)/2
= (a+b+c)^3.
∵ 9f/4 -(f/2)^2 ≒ 4.2291774 > 7/2, (f/2)^2 ≒ 1.78792986 > 1/2.
362:361
04/08/29 18:13
【補題】の略証
F(x) = x^5 - x^2 + 3 = 3x + (1-x)^2 (3+3x+2x^2+x^3) = 3x + G(x) とおく。
F(a)F(b)F(c) = [3a+G(a)][3b+G(b)][3c+G(c)] = 27abc + G(a)・D_a + G(b)・D_b + G(c)・D_c
D_a = 9bc + (3/2)[bG(c)+cG(b)] + (1/3)G(b)G(c),
D_b = 9ca + (3/2)[cG(a)+aG(c)] + (1/3)G(c)G(a),
D_c = 9ab + (3/2)[aG(b)+bG(a)} + (1/3)G(a)G(b).
ここで D_ の上限を2とおりに評価できる。
D_a ≧ (3/2){bF(c)+cF(b)} ≧ (3f/2)(b+c) = 4.01140483(b+c),
D_a ≧ F(b)F(c)/3 ≧ (1/3)f^2 = 2.38390647.
∴ (3+3a)D_a ≧ (f^2)a + (9f/2)(b+c)
また、G(x) ≧ (1-x)^2(3+3x) より,
F(a)F(b)F(c) = 27abc + G(a)・D_a + G(b)・D_b + G(c)・D_c
≧ 27abc + (1-a)^2(3+3a)・D_a + (1-b)^2(3+3b)・D_b + (1-c)^2(3+3c)・D_c
≧ 27abc + (1-a)^2[(f^)a + (9f/2)(b+c)] + (1-b)^2[(f^2)b + (9f/2)(c+a)] + (1-c)^2[(f^2)c + (9f/2)(a+b)].
363:362
04/08/29 18:19
>352
等号成立は a=b=c=1 のとき。
[362]の]訂正
D_の下限を2とおりに・・・
364:132人目の素数さん
04/08/30 11:56
>360 (1)
0 = |Σ[k=1,m] x_k↑ |^2 = Σ[k=1,m] |x_k|^2 + Σ[1≦i<j≦m] 2(x_i, x_j)
= Σ[1≦i<j≦m] {|x_i|^2 +|x_j|^2 +2(x_i, x_j)} - (m-2)Σ[k=1,m] |x_k|^2
= Σ[1≦i<j≦m] |x_i +x_j|^2 - (m-2)Σ[k=1,m] |x_k|^2.
365:ぬるぽ
04/08/31 23:03
>361
f=2 で十分と思われ...
x<1 のとき F(x)> -x^2 +3> 2
x>1 のとき F(x) = x^2(x^3-1)+3 > 3
∧_∧
( ;´∀`) <ぬるぽ
366:132人目の素数さん
04/09/02 03:26
いつもお世話になります、だめぽ不等式ヲタです。
いくつか入手したので、分からないのがあったら質問します。
よろしくお願いします。
___
./ ≧ \
|:::: \ ./ | 懲りずに
|::::: (● (● | ハァハァ
ヽ::::... .ワ....ノ
367:132人目の素数さん
04/09/04 10:59
>>352
F(x) = x^5 -x^2 +3 ≧ x^3 +2 だから次の[命題]に帰着する。
(証)F(x) - (x^3 +2) = x^5 - x^3 -x^2 +1 = (x^3 -1)(x^2 -1) ≧0.(終)
【命題】a,b,c≧0 ⇒ (a^3 +2)(b^3 +2)(c^3 +2) ≧ (a+b+c)^3.
(略証) 下の補題より、
(a^3 +2)(b^3 +2)(c^3 +2) = (abc)^3 + 2{(ab)^3 + (bc)^3 +(ca)^3} + 4(a^3 +b^3 +c^3) +8
= [(abc)^3 +1+1] + [(ab)^3 +a^3 +1] + [(ab)^3 +b^3 +1] +[(bc)^3 + b^3 +1]
+ [(bc)^3 +c^3 +1] + [(ca)^3 +c^3 +1] + [(ca)^3 +a^3 +1] + [a^3 +b^3 +c^3] +a^3 +b^3 +c^3
≧ 3{2abc + (a^2)(b+c) +(b^2)(c+a) +(c^2)(a+b)} + a^3 +b^3 +c^3
= (a+b+c)^3.
等号成立は a=b=c=1 のとき.(終)
【補題】(相加相乗平均)
x+y+z≧0 ⇒ [x^3 +y^3 +z^3] ≧ 3xyz.
(証) x^3 +y^3 +z^3 - 3xyz
= (x+y+z)(x^2 +y^2 +z^2 -xy -yz -zx)
= (x+y+z){(x-y)^2 +(y-z)^2 +(z-x)^2}/2 ≧0.
等号成立は x=y=z のとき. (終)
368:132人目の素数さん
04/09/04 12:01
>367 神降臨キタ━(゚∀゚)━!!!
> (a^3 +2)(b^3 +2)(c^3 +2) ≧ (a+b+c)^3
Helderの不等式でもハァハァ…。
(a^3+1^3+1^3)^(1/3)*(b^3+1^3+1^3)^(1/3)*(c^3+1^3+1^3)^(1/3) ≧ a+b+c
369:132人目の素数さん
04/09/04 12:07
既出かもしれないけど、保守ついでに…。
a≧b≧c≧0, a+b+c=3 のとき、ab^2 + bc^2 + ca^2 ≦ 27/8
[2002 中国]らしい、確認できなかったけど…)
370:132人目の素数さん
04/09/05 15:05
>369
(a+b+c)^3 - 8(ab^2 +bc^2 +ca^2) -3abc = (a+5c)(a-b)^2 +(4a-4b+c)(b-c)^2 +c(a-b)(b-c) ≧ 0.
∴ ab^2 + bc^2 + ca^2 + (3/8)abc ≦ (1/8)(a+b+c)^3.
でもいいらしい。確認できなかったけど・・・
>368
Hoelder の式は >>137,>>139 にありまつ。略証は >>158
ぬるぽ
371:370
04/09/05 18:12
>369
(a+b+c)^3 - 8(ab^2 +bc^2 +ca^2) -3abc = (a+5b-5c)(a-b)^2 +(4a-4b+c)(b-c)^2 +c(a-b)(b-c) ≧ 0.
でないといけないらしい。すまそ...
372:132人目の素数さん
04/09/05 20:32
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● |
ヽ::::... .ワ.....ノ | | ガッ
と ) .| |
Y /ノ 人
/ ) < >__Λ∩
_/し' //. V`Д´)/ ←>>370
(_フ彡 /
373:132人目の素数さん
04/09/08 00:47
任意の自然数nについて,∫[n-1/2→n+1/2]√xdx<√nを示せ.
わからんぽ…教えてくり
374:132人目の素数さん
04/09/08 01:02
>>373
y=√xの点(n,√n)における接線をy=ax+bとするとax+b≧√x、等号はx=nのときのみ
なので
√n=∫[n-1/2,n+1/2](ax+b)dx>∫[n-1/2,n+1/2]√xdx
375:132人目の素数さん
04/09/08 03:06
>374
y=√x は上に凸なので.....
ぬるぽ
376:132人目の素数さん
04/09/08 18:09
任意の自然数nについて,∫_[n-1,n] √x dx > {√(n-1)+√n}/2 を示せ.
わからんぽ…教えてくり
377:132人目の素数さん
04/09/08 21:16
>>376
面積比べれ、台形と。
378:132人目の素数さん
04/09/09 06:33
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● |
ヽ::::... .ワ.....ノ | | ガッ
と ) .| |
Y /ノ 人
/ ) < >__Λ∩
_/し' //. V`Д´)/ ←>>375
(_フ彡 /
379:132人目の素数さん
04/09/09 13:01
もっとおもろいん無いのけ
380:132人目の素数さん
04/09/09 22:20
>379
面白い問題おしえてーな
スレリンク(math板)
381:132人目の素数さん
04/09/10 09:33
>>357
x,y,zがベクトルのときの Hlawkaの不等式の等号成立条件は
「x,y,zが同じ向きのとき」 または 「x,y,zの少なくとも一つが0」
でよろしいですか?
382:357
04/09/10 20:21:09
>381
等号成立は「x,y,z,wのうちの3つが同じ向きのとき」でつ。
このとき x+y+z+w=0 から他の1つは逆向きとなり、x,y,z,wは共線または0でつ。
「x,y,zの少なくとも一つが0」であっても等号が成立するとは限りません。
ぬるぽ
383:132人目の素数さん
04/09/10 21:44:27
【Hlawkaの不等式】
任意のベクトル x,y,z に対して
|x|+|y|+|z|+|x+y+z| ≧ |x+y|+|y+z|+|z+x|
x,y,zのうちの少なくとも一つ、例えば z=0のとき
(左辺) = (右辺) = |x|+|y|+|x+y|
y=px, z=qx (p,q>0) のとき、
(左辺) = (右辺) = 2(1+p+q)|x|
384:132人目の素数さん
04/09/10 23:03:48
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● |
ヽ::::... .ワ.....ノ | | ガッ
と ) .| |
Y /ノ 人
/ ) < >__Λ∩
_/し' //. V`Д´)/ ←>>382
(_フ彡 /
385:132人目の素数さん
04/09/11 00:09:08
>382の切腹まだぁ?
386:382
04/09/11 01:01:59
>385
等号成立は「x,y,z,wが共線で、その3つが同じ向きのとき」でつ。
このとき x+y+z+w=0 から他の1つは逆向きとなりまつ。(0↑はどの方向とも共線とする)
すみません、間違ってました。
死んでお詫びを…
∧_∧
(´Д` )
/ y/ ヽ
Σ(m)二フ ⊂[_ノ
(ノノノ | | | l )
387:132人目の素数さん
04/09/12 14:27:44
【問題】
f(x),g(x)は 0≦x≦1で連続とし、f(0)=0, f(x)>x, g(1)≦1 を満たし、
f(x)/x, g(x)/x はともに狭義の単調増加であるとする。 このとき
0<x<1 で f(g(x)) ≦ f(x)g(x)/x ≦ g(f(x)).
を示してくださいです。 〔R.P.Boas: Math.Magazine,52(1979)〕
388:132人目の素数さん
04/09/12 15:01:40
不等式(ヒルベルト)でげす。
1/p+1/q=1, p>1, f(x)>0, g(y)>0 (x≧0,y≧0) としまする。
{∫_[0,∞) f(x)^p dx}^(1/p){∫_[0,∞) g(x)^q dy}^(1/q) > {sin(π/p)/π}∫∫{f(x)g(y)/(x+y)}dxdy
を示してくださいです。
俺にはサパーリ
389:132人目の素数さん
04/09/12 19:04:31
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● | ハァハァ
ヽ::::... .ワ....ノ
390:132人目の素数さん
04/09/12 19:12:36
>>387
f(x),g(x)は 0≦x≦1で0≦f(x)≦1とか0≦g(x)≦1とか仮定していいの?
でないとf(g(x))とかg(f(x))とかかんがえるとき困るとおもうんだけど。
391:132人目の素数さん
04/09/12 22:42:02
>>388
まず極座標(r,θ)に変換して、rについてヘルダーの不等式を使う。
t = 1/p, tanθ = s とすると、
∫[0,∞) (1+s)s^t ds = π/sin(πt) (0<t≦1/2)を示せばよいことがわかる。
t ≦ 1/2 かつ t が有理数のときは留数定理で計算できる。
tについての連続性からt ≦ 1/2でもこの等式は成立する。
392:132人目の素数さん
04/09/12 22:46:44
分かスレ185にありますた。
513 :132人目の素数さん :04/09/12 13:57:18
a,b,c,d>0 ならば (a+b+c+d)^3 - (a^3+b^3+c^3+d^3) ≧ 15abcd(1/a+1/b+1/c+1/d)
を示してくださいです。
スレリンク(math板:513番),547
393:132人目の素数さん
04/09/12 22:47:36
訂正 ∫[0,∞) (1+s)s^t ds → ∫[0,∞) 1/{(1+s)s^t} ds
394:132人目の素数さん
04/09/12 23:16:42
>>392
スレリンク(math板:547番)
で解決したんじゃないの?
395:132人目の素数さん
04/09/13 03:12:52
>394
ここは 不等式の収集場所だから いいのれす。
396:132人目の素数さん
04/09/14 08:03:10
>393
> ∫[0,∞) 1/{(1+s)s^t} ds = π/sin(πt) (0<t<1)
高木:「解析概論」改訂第三版、岩波書店
p.242 [例]
p.264 練習問題(5)-(8)[注意]
397:132人目の素数さん
04/09/16 02:17:47
マルチ
398:132人目の素数さん
04/09/16 11:36:25
>392
【類題】n≧3, a_1~a_nのk次の対称式をS_k とおくと、
(S_1)^3 - Σ[k=1~n](a_k)^3 ≧ {6(n+1)/(n-2)}S_3.
(略証)
左辺 - 右辺 = 3(S_1・S_2 - S_3) - {6(n+1)/(n-2)}S_3
= [3/(n-2)]{(n-2)S_1・S_2 - 3nS_3}
(n-2)S_2・S_1 -3nS_3
= (n-2)Σ[i<j] a_i・a_j Σ[k=1~n] a_k - 3nΣ[i<j<k] a_i・a_j・a_k
= (n-2)Σ[i<j] a_i・a_j・(a_i+a_j) - 6Σ[i<j<k] a_i・a_j・a_k
= Σ[i<j] {Σ[k≠i,j]a_k}{(a_i)^2 +(a_j)^2} - Σ[i<j] {Σ[k≠i,j]a_k}2a_i・a_j
= Σ[i<j] {Σ[k≠i,j]a_k}(a_i-a_j)^2 ≧ 0.
ぬるぽ
399:132人目の素数さん
04/09/16 14:25:23
___
./ ≧ \
|:::: \ ./ | グッジョブ!
|::::: (● (● |
ヽ::::... .ワ.....ノ | | ガッ
と ) .| |
Y /ノ 人
/ ) < >__Λ∩
_/し' //. V`Д´)/ ←>>398
(_フ彡 /
400:398
04/09/17 11:52:08
>392
【類題】n≧r≧1, a_1~a_n>0, j次の基本対称式をS_jとおくと、
(S_1)^r -Σ[k=1~n](a_k)^r ≧ {((n^r)-n)/C[n,r]}S_r,
等号成立は r=1,2, n=1 または a_1=・・・=a_n のとき。
C[n,r]は2項係数でつ。
401:132人目の素数さん
04/09/17 16:59:01
>398の最後の式変形は、解読するのにすごく時間が掛かった。
>400は、もっと大変そうな予感…。
402:132人目の素数さん
04/09/21 13:00:47
任意の実数a,bに対して、a^2+b^2+1 ≧ (√2)a(b+1) を示せ。
403:132人目の素数さん
04/09/21 21:59:03
>402
(a^2 +b^2 +1)^2 - 2{a(b+1)}^2
= a^4 +2(a^2)(b^2 +1) +(b^2 +1)^2 -2(a^2)(b^2 +2b +1)
= a^4 -2(a^2)(2b) + (2b)^2 + (b^2 -1)^2
= (a^2-2b)^2 + (b^2 -1)^2 ≧0.
∴ a^2 +b^2 +1 ≧ √2 |a(b+1)|.
404:132人目の素数さん
04/09/21 22:17:09
>402
2(b^2 +1) = (b+1)^2 + (b-1)^2 ≧ (b+1)^2.
∴ 左辺 = a^2 + (b^2 +1) ≧ 2|a|√(b^2 +1) = (√2)|a(b+1)| ≧ 右辺.
等号成立は a=√2, b=1 のとき。
ぬるぽ
405:132人目の素数さん
04/09/22 07:49:20
>402
(1/2)a^2 + b^2 = (√2)ab + (a/√2 -b)^2 ≧ (√2)ab, 等号は a/(√2)=b.
(1/2)a^2 + 1^2 = (√2)a + (a/√2 -1)^2 ≧ (√2)a, 等号は a/(√2)=1.
辺々たす。
ぬるぽ
406:132人目の素数さん
04/09/23 14:03:31
キタ━(゚∀゚)━!!!!
405の解き方には全く気づきませんでした
___
./ ≧ \
|:::: \ ./ | グッジョブ!
|::::: (● (● |
ヽ::::... .ワ.....ノ | | ガッ
と ) .| |
Y /ノ 人
/ ) < >__Λ∩
_/し' //. V`Д´)/ ←>>403-405
(_フ彡 /
407:132人目の素数さん
04/09/25 00:15:05
既出だったらスマソ。
正の数 a,b,c に対して、次の不等式を示せ。
1/{a(1+b)} + 1/{b(1+c)} + 1/{c(1+a)} ≧ 3/(1+abc)
408:132人目の素数さん
04/09/25 17:28:13
∑[k=1→n]1/2^k<(n/(2^n))∑[k=0→n](nCk)/(2k+1)を証明せよ
ムズ
409:132人目の素数さん
04/09/26 02:15:02
>400
降参です。
模範解答を教えて下さい。
410:132人目の素数さん
04/09/26 08:35:46
>>400
相加相乗つかうだけじゃないの?
以下1以上の整数nと整数1≦r≦nを固定する。
D={(di)∈Z^n | diは非負実数}、d∈Dと不定元X1・・・Xnに対し
X^d=Π[i=1,n]Xi^diと書く。Πr={(πi) | π1≧π2≧・・・は非負整数列で∑πi=r}、
π∈Πに対しd(π)=(π1,π2,・・・πn)とする。
n次対称群G=SnをDに自然に作用させてG(d)={σ|σ(d)=d}とさだめる。以下をしめせばよい。
----
またπ∈ΠにたいしてS(π)=∑[σ∈G]X^(σ(d(π)))とする。このとき任意の正の実数の
組(x1,・・・xn)にたいしてS(π)(x1,・・・,xn)≧(n!/C[n,r])Sr(x1,・・・,xn)、等号成立はπ1=π2=・・・πr=1のとき
またはx1=x2=・・・=xnのとき。
(証明)d0=(1,1,・・・,1,0,・・・0,)(最初のr個が1である多重次数)とおく。
このとき相加相乗平均の関係式より
(1/r)∑[σ∈<(1,2,3,・・・,r)>]x^{σ(d(π))}≧(Π[σ∈<(1,2,3,・・・,r)>]x^{σ(d(π))})^(1/r)=x^d0
∴∑[σ∈<(1,2,3,・・・,r)>]x^{σ(d(π))}≧rx^d0
∴∑[τ∈G,σ∈<(1,2,3,・・・,r)>]x^{τσ(d(π))}≧r∑[τ∈G]x^τ(d(0))
等号成立は主張の等号成立条件が成立するとき。左辺はrS(π)
であり右辺は(n!/C[n,r])Sr(x1,・・・,xn)。
411:132人目の素数さん
04/09/27 08:33:20
>408
右辺 = {n/(2^n)}Σ[k=0,n] C[n,k]/(2k+1)
= ∫_[x=0,1] {n/(2^n)}Σ[k=0→n] C[n,k] x^(2k) dx
= ∫_[x=0,1] n{(1+x^2)/2}^n dx
> ∫_[x=0,1] n{(1+x^2)/2}^(n-1) xdx
= ∫_[u=1/2,1] n{u^(n-1)} du
= [u^n](u:1/2→1)
= 1-(1/2)^n
= Σ[k=1→n] 1/(2^k)
= 左辺.
ここに u=(1+x^2)/2 ≧x, du=xdx.
ぬるぽ
412:132人目の素数さん
04/09/27 22:15:18
>>411
すばらしいね。
うまく最後まで持っていくところは感銘を覚える。
ぬるぽ
413:132人目の素数さん
04/09/28 20:31:01
分かスレ187にありますた。
459 :132人目の素数さん :04/09/28 18:22:22
(前略)
0<b+c,0<c+a,0<c<a+bならば,1/(a+b) < 1/(b+c) + 1/(c+a)
の証明を教えてください.
スレリンク(math板:459番),460
414:132人目の素数さん
04/09/29 15:34:11
460 :132人目の素数さん :04/09/28 18:40:18
>>459
(a+b)(a+b+2c)-(b+c)(c+a)
= (a+b)^2 +2(a+b)c -(c^2) -(a+b)c-ab
= (a+b)^2 +(a+b)c -(c^2) -ab
= (a^2)+ab+(b^2) +c(a+b-c) > 0
(b+c)(c+a) < (a+b)(a+b+2c)
1/(a+b) < (a+b+2c)/{(b+c)(c+a)} = {1/(b+c)}+{1/(c+a)}
415:132人目の素数さん
04/09/29 15:42:57
不等式のコレクションがイパーイ!
(;´Д`)ハァハァ /lァ/lァ //ア//ア!!
a,b,c,d は実数。a^2+b^2≦1 のとき次を示せ。
(a^2+b^2-1)(c^2+d^2-1) ≦ (ab+cd-1)^2
416:132人目の素数さん
04/09/29 15:46:14
正の数 a_1,…,a_n が、
1/(a_1+1998) + … 1/(a_n+1998) = 1/1998
をみたすとき、次を示せ
{(a_1…a_n)^(1/n)}/(n-1) ≧ 1998
417:132人目の素数さん
04/09/29 15:49:33
正の数 a,b,c,d が abcd=1 をみたすとき、次を示せ。
(a^3+b^3+c^3+d^3) ≧ max{a+b+c+d, (1/a)+(1/b)+(1/c)+(1/d)}
418:132人目の素数さん
04/09/29 16:26:25
>415-417をたのもー
| _,.. -‐"/ ̄/ /|  ̄ l ヽ \~`"'ー、ノ たのも~♪
ケフ" / / ,.-'‐ ̄/ .i .i  ̄\- \ \ヾ
/ /.l l l .// / ./ l / ヾ iヽ i.\ たのも~♪
ノ | l l l Y /"¨''ヽ .i / ァ''"¨ヾ i イ゙i. リ
`ヽ r、 丶l i` レ | イ/"
\ ヽ ヽ """ iー'ーv' """ / '
ヽ ヾ- ゝ ._/ ./
/''"" \Y.': ∧∧ ∧∧ソ `"ヽ、
419:132人目の素数さん
04/09/29 22:45:45
>417
相加相乗の関係(Rべき)より、0≦r≦1 に対して
(1-r)・a^n + (r/3)(b^n +c^n +d^n) ≧ a^{n(1-r)}・(bcd)^(nr/3) = (abcd)^(nr/3)・a^s.
ここに、s=n(1-4r/3) とおいた。
文字変数を巡回的に入れ替えて加えると、
a^n +b^n +c^n +d^n ≧ (abcd)^(nr/3)・(a^s +b^s +c^s +d^s)
r=(3/4)(n-1)/n のとき s=1, r=(3/4)(n+1)/n のとき s=-1.
ぬるぽ
420:132人目の素数さん
04/09/29 23:19:08
>415
c^2+d^2≧1 のときは 左辺≦0≦右辺 より明らか。
c^2+d^2≦1 のときは、0 ≦ 1-a^2 -b^2 ≦ 1-2ab, 0 ≦ 1-c^2-d^2 ≦ 1-2cd より、
左辺 ≦ (1-2ab)(1-2cd) ≦ (1/4){(1-2ab)+(1-2cd)}^2 = (1-ab-cd)^2 = 右辺.
ぬるぽ
421:132人目の素数さん
04/09/29 23:37:05
神キタ━(゚∀゚)━!!!! いつもありがとうございます。
グッジョブ! __ ∩ ∩ _
-´─- 、\H- 、_,,,,......イヘへ、_/7'´_~二ニ
r==⊂エニ/__::_:::\:://ハ::::::::V´二二二
l /::/:::::::::::>::::::::::/::ゞ;l;::::::八コ⊃ /
l //::/:::/:::/::::::::::::/:i::l:::l::l:::::::::::!ヽ\
|/::/:::/:::/::/::/|:|:::::/|::|:::|::|!:l:::::::::::|::::l \
/|:/|::/:|:::|:::||::|_,!|/::::::!:||::j::|!::l::::::::::|::::::l_ノ
//.|! .!::|::|::|ゞ|V_i:|;、:::::::/jノjムノ|/!:::l:::::l:::::::l
// .|::|::|;;|/〇:゙li ゞノ fl〇::lト |::::j::::l_::::::|l
__ `ー-、 |::|::f^ヘ.ゞ:ノj {|ゞ::ノj !:::/:::j リ::∧! /
/ l \!:|:八! `¨´ rー-v、``¨´ l:::/::/ノ K´
,.- !、_. { //|:ト;:::::ゝ、. ! ノ _ノ:/!::/:|| |l
. j __ ) ゙i_// ゞf⌒ゞ=>_`_ニ - ェヱ:/〆し|| |l
. !  ̄).八::: ̄T''亠-く_冫 /:l ト//::::// _〕 |l
. l `¨ ) !:::::::::l、__ノ::::::〕, ,':::ゞ|/:::rー!/ <|| |l
\ ''´ノノ-l:::::::::::::::::::::::(_/└ー亠─┘ 丶、 ノ~\ |l
 ̄|~|;;;;/::::::::::::::::::::::::::::) l 厂:::::::::\
!::!/::::::::::::::::::_f⌒ビ/ ト-'゙:::::::::::::::::::
レ':::::::::::::::::(_ ※.f゙ !;:::::::::::::::::::::::
/_f⌒L;:::::::::::ゝ┌┤ l;::_f⌒L;::::::::
. /〔 ※ )::::r─亠‥ _r-∩_ ├¬ )::::
422:132人目の素数さん
04/09/30 05:46:35
>415の類題
a,b,c,d は実数。a^2+b^2≦1 のとき次を示せ。
(a^2+b^2-1)(c^2+d^2-1) ≦ (ac+bd-1)^2
423:132人目の素数さん
04/09/30 11:59:31
>422
c^2 +d^2 ≧1 のときは 左辺≦0≦右辺 で明らか。
c^2 +d^2 ≦1 のときは、(a,b)=r↑, (c,d)=R↑, r↑・R↑= s とおくと
1-a^2-b^2=1-r^2, 1-c^2-d^2=1-R^2, 1-ac-bd =1-s, s≦min(rR,2-rR) で、
右辺-左辺 = (1-s)^2 - (1-r^2)(1-R^2) = (r-R)^2 + (rR-s)(2-rR-s) ≧0.
ぬるぽ
424:132人目の素数さん
04/09/30 22:16:33
>419
>相加相乗の関係(Rべき)
なんですか、それは?
425:132人目の素数さん
04/10/01 11:37:32
>416
a_k/1998 = x_k とおくと、Σ[k=1,n] 1/(1+x_k) - 1 = 0.
(1+x_1)(1+x_2)・・・・・(1+x_n) を掛けて通分すると
Σ[k=0,n] (n-k)S_k -Σ[k=0,n] S_k =0.
ここに、S_k は {x_1,x_2,・・・・,x_n} のk次の基本対称式,
相乗平均 (x_1・x_2・・・・・x_n)^(1/n) = (Sn)^(1/n) =u.
0 = Σ[k=0,n] (n-k-1)S_k
≧ Σ[k=0,n] (n-k-1)C[n,k]u^k (相加相乗平均)
= Σ[k=0,n] (n-k)C[n,k]u^k -Σ[k=0,n] C[n,k]u^k
= nΣ[k=0,n-1] C[n-1,k]u^k -Σ[k=0,n] C[n,k]u^k
= n{(1+u)^(n-1)} -(1+u)^n
= (n-1-u){(1+u)^(n-1)}.
∴ u/(n-1) ≧ 1.
ぬるぽ
426:419
04/10/01 16:56:12
>424
相加相乗の関係について
a,b,c,・・・・≧0, r,s,t,・・・・≧0, r + s + t + ・・・・・・ = 1 のとき
a・r + b・s + c・t + ・・・・・ ≧ (a^r)(b^s)(c^t)・・・・.
べき r,s,t,・・・・∈Q(有理数)の場合、通分すれば相加相乗平均に帰する。
べき r,s,t,・・・・∈R(実数)の場合は、連続性による。(やや面倒)
427:132人目の素数さん
04/10/01 21:30:22
>426
(;´Д`)ハァハァ /lァ/lァ //ア//ア!!
文献の紹介をキボンヌ。
428:426
04/10/02 01:36:26
>427
↓岩波数学辞典の付録の公式の不等式のところ。
a_1,a_2, ・・・・・ ,a_n≧0 のとき ・・・・・ また重みつき平均値について,
∑[ν=1,n] λ_ν・a_ν ≧ Π[ν=1,n] a_ν^λ_ν (∑[ν=1,n] λ_ν =1, λ_ν>0).
(略証)y=Ln(x) が上に凸であることからJensenの定理を使って導く。
ぬるぽ
429:426
04/10/02 02:02:12
y=exp(x) が下に凸であることから導いてもよい。
430:425
04/10/02 14:27:30
>416
a_k/1998 = x_k とおく。
【補題】(Klamkin,1974)
x_k>1 ⇒ ∑[k=1,n] 1/(1+x_k) ≧ n/(1+u), ただし u = (x_1・x_2・・・・・・x_n)^(1/n):相乗平均。
(略証)nに関する帰納法による。
x_kがすべて等しいときは明らかに成立するので、 u は x_n と x_{n-1} の間にあるとしてよい。
いま y_n =u, y_{n-1} =x_n・x_{n-1}/u とおくと 積は不変で、和は
x_{n-1} + x_n - y_{n-1} - y_n = (u-x_{n-1})(x_n-u)/u ≧0 だけ減少する。
∴ 1/(1+y_{n-1}) + 1/(1+y_n) ≦ 1/(1+x_{n-1}) + 1/(1+x_n).
{x_1 ・・・・ x_{n-2}, y_{n-1}}の n-1 個で考えると、相乗平均はu.
∴帰納法の仮定(n-1)により、
∑[k=1,n] 1/(1+x_k) ≧ {∑[k=1,n-2] 1/(1+x_k) + 1/(1+y_{n-1})} +1/(1+u)
≧ (n-1)/(1+u) + 1/(1+u)
= n/(1+u).
ぬるぽ
431:132人目の素数さん
04/10/02 20:07:46
(;´Д`) ハァハァ /lァ/lァ /lア/lア!!
参考文献をキボンヌ!
432:132人目の素数さん
04/10/02 20:29:35
(Klamkin's Inequality)
-1 < x,y,z < 1 のとき、
1/{(1-x)(1-y)(1-z)} + 1/{(1+x)(1+y)(1+z)} ≧ 2
433:132人目の素数さん
04/10/03 00:53:28
>432
相加相乗ハァハァと・・・
左辺 ≧ 2/√{(1-x^2)(1-y^2)(1-z^2)} ≧ 2.
ぬるぽ
434:132人目の素数さん
04/10/03 02:55:14
【問題】 正の数 a,b,cに対して、次式を証明せよ。
(1) \sqrt{(a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2)}
≧ abc + \sqrt[3]{(a^3+abc)(b^3+abc)(c^3+abc)}
(2) \sqrt(a^4+b^4+c^4) + \sqrt(a^2b^2+b^2c^2+c^2a^2)
≧ \sqrt(a^3b+b^3c+c^3a) + \sqrt{(ab^3+bc^3+ca^3)
∧_∧
( ;´∀`) < 勃起しますた。 ハァハァ…
人 Y /
( ヽ し
(_)_)
435:430
04/10/03 15:11:14
>416
(430の続き)
【補題】の条件を、 ∀(i≠j); x_i・x_j -1 >0 に緩めても成立する。
(略証) 1/(1+x_{n-1}) + 1/(1+x_n) = 1 - [x_{n-1}・x_n -1]/[1-(x_{n-1}+x_n)+x_{n-1}・x_n] は (x_{n-1}+x_n) について単調増加。
∴ 1/(1+y_{n-1}) + 1/(1+y_n) ≦ 1/(1+x_{n-1}) + 1/(1+x_n).
[416]では 1 > 1/(1+x_i) + 1/(1+x_j) = 1 - [x_i・x_j -1]/[(1+x_i)(1+x_j)] により x_i・x_j -1 >0.
>434
(2) 相加相乗とコーシーでハァハァと・・・・・
{√(a^4 +b^4 +c^4) + √[(ab)^2 +(bc)^2 +(ca)^2]}/2 ≧ {(a^4 +b^4 +c^4)[(ab)^2 +(bc)^2 +(ca)^2]}^(1/4) ≧ √(a^3・b +b^3・c +c^3・a)
{√(b^4 +c^4 +a^4) + √[(ab)^2 +(bc)^2 +(ca)^2]}/2 ≧ {(b^4 +c^4 +a^4)[(ab)^2 +(bc)^2 +(ca)^2]}^(1/4) ≧ √(a・b^3 +b・c^3 +c・a^3)
辺々たす。
ぬるぽ
436:387
04/10/03 16:08:07
>390
f(0)=0, 0≦g(x)≦1 ですが、f(x)≦1 は不要。
たとえば f(x)=arcsin(x) も可。
大関信雄・大関清太 共著:「不等式への招待」,近代科学社 (1987) p.62の定理
437:435
04/10/03 20:23:45
>434 (1) ハァハァ
右辺 = abc・{1+[(a^2 +bc)(b^2 +ca)(c^2 +ab)/(abc)^2]^(1/3)} ≡ abc(1+u).
左辺 = √{(abc)^2 +(a^2 +bc)(b^2 +ca)(c^2 +ab)} = abc・√{1+(u^3)}.
u^3 = 8 +{bc/(a^2)+(a^2)/bc -2} +{ca/(b^2)+(b^2)/ca -2} +{ab/(c^2)+(c^2)/ab -2} ≧ 8.
∴ u ≧ 2.
(左辺)^2 -(右辺)^2 = (abc)^2・{(1+u^3)-(1+u)^2} = (abc)^2・u(u+1)(u-2) ≧0.
∴ 左辺 ≧ 右辺.
ぬるぽ
438:132人目の素数さん
04/10/05 17:05:22
>430
>いま y_n =u, y_{n-1} =x_n・x_{n-1}/u とおくと 積は不変で、
(y_kの積)
= (x_kの積)^2/{x_1*x_2*u^(n-2)}
= (x_kの積)u^2/(x_1*x_2)
≠(x_kの積)
だと思うのですが…
439:430
04/10/05 18:21:05
>438
分かりにくくてすまそ。全部書けば、
y_k = x_k (1≦k≦n-2), y_{n-1} = x_{n-1}・x_n/u, y_n = u.
したがって
y_{n-1}・y_n = x_{n-1}・x_n, (y_kの積) = (x_kの積) ≡ u^n.
ってことでつ。
ぬるぽ
440:132人目の素数さん
04/10/05 21:33:59
嗚呼、成程。
441:132人目の素数さん
04/10/06 01:38:03
この機会に、根号のついた不等式でハァハァしちゃうぞ!
⊿ ○ ∇ 、___,、´`゙;~、 ';冫 ☆
┏ ━ゝヽ''/ ≧ \━〆A!゚━┓。
╋┓"〓┃ < ゝ\',冫。' |:::: \ ./ |゛△│´'´,.ゝ'┃. ●┃ ┃┃
┃┃_.━┛ヤ━━━|::::: (● (● |━━━━━ ━┛ ・ ・
∇ ┠─Σ- ヽ::::... .ワ.....ノ 冫 そ',´; ┨'゚,。
.。冫▽ < ⊂ ./⊃ 乙 ≧ ▽
。 ┃ Σ (⌒ゞ ,l, 、'' │ て く
┠─ム┼ ゝ,,ノ ノゝ. 、,, .┼ ァ Ζ┨ ミo''`
。、゚`。、 i/ レ' o。了 、'' × 个o
○ ┃ `、,~´+√ ▽ ',!ヽ.◇ o┃
┗〆━┷ Z,.' /┷━''o ヾo┷+\━┛,゛;
ヾ ⊿ '、´ ∇
442:132人目の素数さん
04/10/06 01:41:17
(1) [Carson's Inequality] a,b,c>0に対し
\sqrt[3]{(a+b)(b+c)(c+a)/8} ≧ \sqrt{(ab+bc+ca)/3}
(2) a,b,c,d>0に対し
\sqrt{(a^2+b^2+c^2+d^2)/4} ≧ \sqrt[3]{(abc+bcd+cda+dab)/4}
(3) a,b,c>0に対し
(|a-b|+|b-c|+|c-a|)/3 + \sqrt[3]{abc} ≧ (a+b+c)/3
(4) [1998,Hong Kong] a,b,c>1に対し
\sqrt{a-1} + \sqrt{b-1} + \sqrt{c-1} ≦ \sqrt{a(bc+1)}
(5) [1998 APMO] a,b,c>0に対し
(1+ a/b)(1+ b/c)(1+ c/a) ≧ 2(1+ (a+b+c)/\sqrt[3]{abc})
(6) [1997 Latvia] a,b>0、nは自然数のとき、
1/(a+b) + 1/(a+2b) + … + 1/(a+nb) < n/\sqrt{a(a+nb)}
(7) [1997 Hong Kong] a,b,c>0に対し
abc(a+b+c+\sqrt{a^2+b^2+c^2})/{(a^2+b^2+c^2)(ab+bc+ca)} ≦ (3+\sqrt{3})/9
(8) [1999 Austria-Poland] a,b≧0に対し
{(\sqrt[3]{a^2b}+\sqrt[3]{ab^2})/2}^(3/2)
≧ (a+\sqrt{ab}+b)/3
≧ (a+\sqrt[3]{a^2b}+\sqrt[3]{ab^2}+b)/4
≧ {(\sqrt{a}+\sqrt{b})/2}^2
443:LettersOfLiberty ◆rCz1Zr6hLw
04/10/06 11:03:05
さて、
xを0より大きい実数とするとき、
Γ(x+1)≥(x/3)^x
となることを証明せよ。
444:数学科布施 ◆FUSEz5Eqyo
04/10/06 13:27:14
このスレまじ勃起する
445:132人目の素数さん
04/10/06 13:32:46
>443の馬鹿がまた荒らしとる!
446:132人目の素数さん
04/10/06 13:49:19
俺は不等式ヲタの神々とひっそりとハァハァしたいのに、
糞kingは、糞レスしかできないくせにage荒らししやがる!
>>194-204
447:132人目の素数さん
04/10/06 15:37:26
| | | | |┃| :|
| | | | |┃|i | />>408 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
| | | | ガタガタ |┃| < nCrと聞いちゃ、黙っていられ・・・・
| | | |______|ミ | .i.| | あれ?開かない・・・?
| | ̄ ̄ ̄ ̄ ̄ ̄| | |┃|:. ,| \______________
| | | | |┃| i|
| | | | |┃| :|
| | | | |┃|i |
| | | | |┃|, :.|
|_|====―●==|_|______|┃| i|_______
448:132人目の素数さん
04/10/06 15:43:13
>>408
示すべき不等式を変形すると (2^n-1)/n < Σ[k=0,n]C[n,k]/(2k+1)
>>411のその証明を真似ると、
Σ[k=0,n]C[n,k]/(2k+1) < Σ[k=0,n]C[n,k]/(k+1) = … (以下同様)
結局
(2^n-1)/n < Σ[k=0,n]C[n,k]/(2k+1) < (2^{n+1}-1)/(n+1)
___
|┃三 ./ nCr \ ________
|┃ |:::: \ ./ | / もっといい
|┃ ≡|::::: (● (●| < 評価式はできないかなぁ…
____.|ミ\_ヽ::::... .∀....ノ \ ハァハァ /lァ/lァ
|┃=__ \  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
|┃ ≡ ) 人 \ ガラッ
449:132人目の素数さん
04/10/06 16:48:04
自然数nに対して
Σ[k=0,n]C[n,k]/(2k+1)
≦ Σ[k=0,n]C[n,k]/(k+2)
= ∫[0,1]Σ[k=0,n]C[n,k]x^{k+1}dx
= ∫[0,1]x(1+x)^kdx
= (部分積分して)
= (n*2^{n+1}+1)/(n+1)(n+2)
___
./ nCr \ まだ いけるかなぁ
|:::: \ ./ | ハァハァ
|::::: (● (● |
ヽ::::... .∀....ノ / チン ☆
_( ⊃ ⊃ チン ☆
|\ ̄ ̄ ̄ ̄旦 ̄\
| | ̄ ̄ ̄ ̄ ̄ ̄ ̄|
\| 愛媛みかん |
450:132人目の素数さん
04/10/06 20:22:56
>442
(8)の初めの不等号は a or b→0 の場合は成り立たな伊予柑....
451:132人目の素数さん
04/10/07 04:31:33
| | | | |┃| :|
| | | | |┃|i | />>442,450 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
| | | | ガタガタ |┃| < 確かにAB=0のとき成り立たないね、(8)番
| | | |______|ミ | .i.| | あれ?開かない・・・?
| | ̄ ̄ ̄ ̄ ̄ ̄| | |┃|:. ,| \_ (8)は1993年の問題で、…
| | | | |┃| i|
| | | | |┃| :|
| | | | |┃|i |
| | | | |┃|, :.|
|_|====―●==|_|______|┃| i|_______
452:442(8)の訂正
04/10/07 04:38:51
>450 グッジョブ
(8)は引用元の問題が 既に誤植でした。
別のところから探してきて確認したら、正しい形は以下の通りです。
(8) [1993 Austria-Poland] a,b≧0に対し
{(\sqrt[3]{a^2}+\sqrt[3]{b^2})/2}^(3/2)
≧ (a+\sqrt{ab}+b)/3
≧ (a+\sqrt[3]{a^2b}+\sqrt[3]{ab^2}+b)/4
≧ {(\sqrt{a}+\sqrt{b})/2}^2
∧_∧ それでは、不等式solverの皆様方、
(´Д` ) よろしくお願いします。
/ y/ ヽ
Σ(m)二フ ⊂[_ノ とりあえず、死んでお詫びを…
(ノノノ | | | l )
453:132人目の素数さん
04/10/07 04:58:07
>444
不等式に勃起する君も、今日から不等式ヲタだ!
∧_∧
( ;´∀`) < 勃起しますた。 ハァハァ…
人 Y /
( ヽ し
(_)_)
454:132人目の素数さん
04/10/08 01:43:02
>443
Γ(x+1) = xΓ(x) = x∫_[t=0,∞) t^(x-1) e^(-t) dt
≧ x∫_[t=0,x] t^(x-1) e^(-t) dt
≧ e^(-x)∫_[t=0,x] x・t^(x-1) dt
= e^(-x) [t^x](t=0,x)
= e^(-x) (x^x)
= (x/e)^x.
ぬるぽ
455:442(2)に追加
04/10/08 05:46:03
>>442(2)
a,b,c,d>0に対し
\sqrt{(abc+bcd+cda+dab)/4} ≧ \sqrt[3]{(ab+ac+ad+bc+bd+cd)/6}
456:132人目の素数さん
04/10/08 05:52:30
>>455
f(x)=(x-a)(x-b)(x-c)(x-d)=0 は重解を含めて4個の正の解をもつ。
y=f'(x)のグラフを考えれば、f'(x)=0も重解を含めて3個の正の解 α,β,γ をもつ。
解と係数の関係を用いて、示すべき不等式を α,β,γ で表すと
(αβ+βγ+γα)/3 ≧ \sqrt[3]{(αβγ)^2}
となる。これは相加相乗平均の関係だから不等式は示された。
等号成立条件は α=β=γ で、このとき y=f(x) のグラフを考えて a=b=c=d.
(*゚∀゚)=3
457:442に追加
04/10/08 06:00:38
もひとつルートの不等式追加。
(9) 実数 a,b が ab>0 をみたすとき、
\sqrt[3]{a^2b^2(a+b)^2/4} ≧ (a^2+10ab+b^2)/12
458:132人目の素数さん
04/10/08 08:37:31
ちょっと話し変わるけど、
URLリンク(www.kalva.demon.co.uk)
この不等式の証明で、CS不等式を使った後
√{Σ(b_i)^2} ≦ 1
をどうやって示すのですか? リンク先の最後の行
(b_1)^2 ≦ (x_1)^2/{1+(x_1)^2} = 1 - 1/{1+(x_1)^2}
の意味は分かりますが、b_2,… について同様にしても得られないのですが。
459:132人目の素数さん
04/10/08 10:00:59
| _,.. -‐"/ ̄/ /|  ̄ l ヽ \~`"'ー、ノ >458をたのも~♪
ケフ" / / ,.-'‐ ̄/ .i .i  ̄\- \ \ヾ
/ /.l l l .// / ./ l / ヾ iヽ i.\ たのも~♪
ノ | l l l Y /"¨''ヽ .i / ァ''"¨ヾ i イ゙i. リ
`ヽ r、 丶l i` レ | イ/"
\ ヽ ヽ """ iー'ーv' """ / '
ヽ ヾ- ゝ ._/ ./
460:高1連立不等式
04/10/08 11:21:12
16x+260-13x+20≦300
を整理すると・・
3x≦20
整理途中の計算を教えて下さい
マジレス宜しく御願いしますm(__)m
461:132人目の素数さん
04/10/08 11:22:41
そういう質問は質問スレに書け!
462:132人目の素数さん
04/10/08 11:26:09
ワロタ
463:LettersOfLiberty ◆rCz1Zr6hLw
04/10/08 11:36:44
Re:>460
不等式の基本事項:
a≤bかつc≤dならば、a+c≤b+d.
任意のcに対して、a≤bとa+c≤b+cは同値。(*)
0<aかつ0<bならば、0<ab.
任意のc>0に対して、a≤bとca≤cbは同値。
(*)により、
16x+260-13x+20≤300
⇔16x+260-13x+20-280≤300-280.
464:高1連立不等式
04/10/08 11:51:20
>>463ご丁寧に説明いただき有り難う御座いました
やっと、解く事が出来ました。
465:132人目の素数さん
04/10/08 12:19:22
>458
(b_i)^2 = (x_i)^2/[1+(x_1)^2 +(x_2)^2 +...+(x_i)^2]^2
≦ (x_i)^2/[1+(x_1)^2 +(x_2)^2 +...+(x_{i-1})^2][1+(x_1)^2 +(x_2)^2 +...+(x_i)^2]
= 1/[1+(x_1)^2 +(x_2)^2 +...+(x_{i-1})^2] - 1/[1+(x_1)^2 +(x_2)^2 +...+(x_i)^2].
∴ Σ[i=1,n] (b_i)^2 < 1.
と読むんだろうな。
ぬるぽ
466:132人目の素数さん
04/10/08 15:53:04
ぬるぽ神キタ━(゚∀゚)━!!!
そうか、その手があったか!! ありがとうございますです!!!
┏┓ ┏━┓ / ̄ ̄ ̄ ̄ ̄ ̄\ .┏━┓┏━┓
┏┛┗┓┃┏┓┃ / ≧ \ ┃ ┃┃ ┃
┗┓┏┛┃┗┛┃┏━━/ ヽ.━━┓┃ ┃┃ ┃
┏┛┗┓┃┏┓┃┃ l::::::::: \ / | ┃┃ ┃┃ ┃
┗┓┏┛┗┛┃┃┗━━|:::::::::: (●) (●) |━━┛┗━┛┗━┛
┃┃ ┃┃ |::::::::::::::::: \___/ | ┏━┓┏━┓
┗┛ ┗┛ ヽ::::::::::::::::::. \/ ノ ┗━┛┗━┛
467:132人目の素数さん
04/10/08 23:48:58
>457
(9)の不等号は逆向きの悪寒....
468:457の訂正
04/10/09 00:01:13
>467 仰せのとおりにございます。
(9) 実数 a,b が ab>0 をみたすとき、
\sqrt[3]{a^2b^2(a+b)^2/4} ≦ (a^2+10ab+b^2)/12
,、|,、
(f⌒i
U j.|
UJ
:
‐=‐
469:132人目の素数さん
04/10/09 22:49:28
>442 (1~5)
(1) (a+b+c)^2 - 3(ab+bc+ca) = {(a-b)^2+(b-c)^2+(c-a)^2}/2 ≧0.
(abc)^(2/3) ≦ (ab+bc+ca)/3 ・・・・ 相加相乗平均
∴ (左辺)^3 = {(a+b+c)(ab+bc+ca)-abc}/8 = (1/8)[(√3)-1/(3√3)](ab+bc+ca)^(3/2) ={(ab+bc+ca)/3}^(3/2) = (右辺)^3.
(2) 左側: (a^2 +b^2 +・・・・)/n - {(a+b+・・・・)/n}^2 = {1/(n-1)n}{[a^2+b^2] + ・・・ -(1/n)[a^2+b^2+2(n-1)ab] -・・・・}
= (1/n)^2 {[a^2 +b^2 -2ab] + ・・・・}
= (1/n)^2 {(a-b)^2 +・・・・} ≧0.
右側: {(a+b+・・・・)/n}^3 - (abc + ・・・・)/C[n,3]
= (1/n)^3 {a^3 +b^3 +・・・・ +3(a^2b+b^2c+c^2a) +3(ab^2 +bc^2 +ca^2) + ・・・・ +6(abc+・・・・)} - (abc+・・・・)/C[n,3]
= {1/n^2C[n,3]}{(1/3)[a^3 +b^3 +c^3]・・・・+ ((n-1)/2)[a^2b+b^2c+c^2a] +((n-1)/2)[ab^2 +bc^2 +ca^2] + ・・・・+((n-1)(n-2)-n^2)(3n-2)(abc+・・・)}
= {1/n^2C[n,3]}{(1/3)[a^3 +b^3 +c^3 -3abc]・・・・+ ((n-1)/2)[a^2b+b^2c+c^2a-3abc] +((n-1)/2)[ab^2 +bc^2 +ca^2 -3abc]+・・・・・} ≧0.
(3) u≧min(a,b,c) のとき、左辺 = 2(MAX-min) +3u ≧ 2MAX +min ≧ a+b+c =右辺.
(4) b,c≧1のとき、{√(b-1) +√(c-1)}^2 = bc - {√(b-1)√(c-1) -1}^2 ≦ bc.
∴ √(b-1) +√(c-1) ≦√(bc), 等号成立は 1/b +1/c =1.
同様に、a≧1, bc≧0 のとき {√(a-1) +√(bc)} ≦√{a(bc+1)}, 等号成立は 1/b + 1/c = a-1.
(5) 相加平均 ≧ 相乗平均 ≧ 調和平均 より
(1/3)(a+b+c)(1/a +1/b +1/c) -1 = (1/3){(a/b +b/a)+(b/c +c/b)+(c/a +a/c)} ≧ 2.
(2/3)(a+b+c)(1/a +1/b +1/c) ≧ 2(a+b+c)/[(abc)^(1/3)].
辺々たす。
ぬるぽ
470:132人目の素数さん
04/10/09 22:57:09
>442 (6~7)
(6) nに関する帰納法による。
n=1のときは明らかに成立
(n+1)/√[a(a+(n+1)b)] - n/√[a(a+nb)] = [(n+1)/f -n]/√[a(a+nb)] = cd/[a+(n+1)b]
f = √{[a+(n+1)b]/(a+nb)} > 1,
c = (2n+1)/[(n+1)/f +n] > 1,
d = {a+(n/2)[1+1/(2n+1)]b}/√[a(a+nb)] > 1.
∴ 1/[a+(n+1)b] < (n+1)/√[a(a+(n+1)b)] - n/√[a(a+nb)].
(7) a^2 +b^2 +c^2 = (1/3){(a+b+c)^2 +(a-b)^2 +(b-c)^2 +(c-a)^2} ≧ (1/3)(a+b+c)^2.
(a+b+c)(ab+bc+ca) = 9abc + a(b-c)^2 + b(c-a)^2 +c(a-b)^2 ≧ 9abc.
∴ abc{(a+b+c)/{(a^2 +b^2 +c^2)(ab+bc+ca)} ≦ abc{(a+b+c)/{(1/3)(a+b+c)^2 (ab+bc+ca)}
= 3abc/{(a+b+c)(ab+bc+ca)} ≦ 3/9.
abc{√(a^2 +b^2 +c^2)/{(a^2 +b^2 +c^2)(ab+bc+ca)} ≦ abc/{(1/√3)(a+b+c)(ab+bc+ca)}
= (√3)abc/{(a+b+c)(ab+bc+ca)} ≦ (√3)/9.
辺々たす。
ぬるぽ
471:132人目の素数さん
04/10/09 22:58:39
>442 (8~9)
(8) a^(1/6) =A, b^(1/6)=B とおく。
上: {[a^(2/3) + b^(2/3)]/2}^3 - {[a+√(ab)+b]/3}^2
= (1/8){A^4 +B^4}^3 - (1/9){A^6+(AB)^3+B^6}^2
= (1/8){A^12 +3(A^2B)^4 +3(AB^2)^4 +B^12} - (1/9){A^12 +2(A^3B)^3 +3(AB)^6 +2(AB^3)^3 +B^12}
= (1/72){A^12 -16A^9B^3 +27A^8B^4 -24A^6B^6 + 27A^4B^8 -16A^3B^9 +B^12)
= (1/72)(A-B)^4{(A^4 -B^4)^2 +AB(4A^2 +10AB +4B^2)(A^4 +B^4)} ≧0.
中: [a+√(ab)+b]/3 - [a^(1/3) +b^(1/3)][a^(2/3) +b^(2/3)]/4
= [A^6 +(AB)^3 +B^6] - [A^2 +B^2][A^4 +B^4]/4
= [A^6 -3A^4B^2 +4(AB)^3 -3A^2B^4 +B^6]/12
=(A-B)^2 {A^4 +2A^3B +2AB^3 +B^4}/12 ≧0.
下: [a^(1/3) +b^(1/3)][a^(2/3) +b^(2/3)]/4 - [(√a +√b)/2]^2
= (1/4)[a^(1/3) +b^(1/3) -2(ab)^(1/6)](ab)^(1/3)
= (1/4)[A^2 + B^2 -2AB](AB)^2
= (1/4)(A-B)^2 (AB)^2 ≧ 0.
なお、{(a^r +b^r)/2}^(1/r) はrについて単調増加
(略証) r<R とすると、y=x^(R/r) は下に凸だから、
{(a^r +b^r)/2}^(R/r) ≦ (a^R +b^R)/2, {(a^r +b^r)/2}^(1/r) ≦ {(a^R +b^R)/2}^(1/R).
(9) (ab+ab+c^2)/3 ≧ (abc)^(2/3) ・・・・ 相加相乗平均
c=(a+b)/2 とおく。
ぬるぽ
472:132人目の素数さん
04/10/09 23:13:08
神キタ━(゚∀゚)━!!! いつもながら流石でございます。
ありがとうございます。 今夜はタップリ抜けそうです。
∧_∧
( ;´∀`)とにかく一発!
人 Y /
( ヽωつ ο°o。
(_)_)
473:469
04/10/09 23:26:51
(2)は次式の略証でつ・・・
a,b,c,・・・・・>0 に対し
√{(a^2 +b^2 +c^2 +・・・・・)/n} ≧ (a+b+c+・・・・・)/n ≧ {(abc+・・・・・)/C[n,3]}^(1/3).
[455]は
\sqrt[3]{(abc+bcd+cda+dab)/4} ≦ \sqrt{(ab+ac+ad+bc+bd+cd)/6} ?
474:132人目の素数さん
04/10/09 23:40:28
>473
嗚呼、またもや書き間違い。
[455]ですが 仰せのとおりにございます。
r~~~~~
__ _ノ うっうっうっ・・・
/__ `ヽ_ ⌒ヽ~~~~~
|〈___ノf レ1(
,L| しL.し'゙"
"` "′
475:cubism
04/10/10 00:30:03
↓分かスレ188から借用
404 :132人目の素数さん :04/10/09 15:59:40
,/|ミ=、
/ .|ミミミ|
.| |ミミミ|
,/|ミ| |ミミミ|
,/ |ミ| |ミミミ|
| |ミ| |ミミミ|
| |ミ| |ミミミ|
| |ミ| |ミミミ|
| |ミ| |ミミミ|
| |ミ| |ミミミ|
_,-'"|. |ミ| |ミミミ|
_,. -'' " ̄~゙三=-_、_ _,.-'" |. |ミ| !ミミミ|
,,.-''" r _、 三三タ_,.-''" | |ミ| ,.彡ヾミ|
/ i {ぃ}} _ニ/ -=三| 」ミヒ彡彡イミヾ
/,.、 `--" ニl -=ニ三=-''レ彡ミミr'" |ミミミ|
l {ゞ} i .ニl==三三ニ=''" ,>'"|ミ| |ミミミ|
.l `" i_,,...-''| ニ`=-=i'" | |ミl,..-=彡ヾミ|
_,.-! ! i -ニ三三/ L.. -ニヾ|ヾ彡'='''"
l´,.- l \/ -ニ三三/ ヾ-‐''"
_. ! ri l\ __--三三三='"
j'‘´l `´ | ! ` ミ三三三三三=''"
i',.. '´} | |
l,.. r´ '´
476:132人目の素数さん
04/10/10 01:01:50
世俗と離れた山奥で、ひっそりとやっている感じが たまらなく (゚∀゚) イイッ!
477:132人目の素数さん
04/10/10 07:10:14
不等式の証明問題って、両辺の文字の次数が一致するものばかりだと思っていた。
一致しなくても、積一定などの与えられた条件を使って書き換えたら一致するのとか。
そうじゃないのもあるって今ごろ知った。
【問題】 正の数 a,b,c に対して、次の不等式を示せ。
1/{a(1+b)} + 1/{b(1+c)} + 1/{c(1+a)} ≧ 3/(1+abc)
478:132人目の素数さん
04/10/10 08:55:57
>>430の補題の仮定 x_k>1 は、x_k≧1 でもOKですよね?
479:430
04/10/10 15:52:54
>478
桶
>>118-129 も嫁
480:473
04/10/10 16:11:36
>455 (474)
(k次の基本対称式)/C[n,k] = P_k とおくと、問題は (P_3)^(1/3) ≦ (P_2)^(1/2).
【定理】
相加平均 = P_1 ≧ (P_2)^(1/2) ≧ (P_3)^(1/3) ≧ ・・・・・ ≧ (P_n)^(1/n) = 相乗平均 ・・・・(1).
(略証) 補題の(2)をk乗して掛けあわせ、共通項を約せばよい。
【補題】
P_{k-1}・P_{k+1} ≦ (P_k)^2 ・・・・・・・・・・・・・・ (2).
(略証) f(x) ≡ (x-a)(x-b)・・・・ = ∑[L=0,n] ((-1)^L)・C[n,L]・P_L・x^(n-L)
g_k(x) ≡ {x^(k+1)}・(d/dx)^(n-k-1) f(x) = {n!/(k+1)!}・∑[L=0,k+1] ((-1)^L)・C[k+1,L]・P_L・x^L
h_k(x) ≡ (d/dx)^(k-1) g(x) = ((-1)^(k+1))・(n!/2)[P_{k-1} -2P_k・x +P_{k+1}・x^2].
f(x)=0 の根はすべて正の実数だから、ロルの定理により、g_k(x), h_k(x) についても同様である。
h_k(x)=0 は実根をもつから、判別式Q_k = (P_k)^2 - P_{k-1}・P_{k+1} ≧0. (終)
【参考書】
「数学の問題=第(1)集」, 第21問 日本評論社 (1977)
E.F.Beckenbach and R.Bellman: "Inequalities", p.11, Ergebnisse叢書, Springer Verlag (1961)
↑ >>84-86 の本
【別法】nに関する帰納法
>>263-271
ぬるぽ
481:132人目の素数さん
04/10/10 16:39:31
【参考書】
ビブンのことはビブンでする向きには
G.H.Hardy, J.E.Littlewood, G.Polya共著, : 「不等式」, シュプリンガー・フェアラーク東京
細川尋史 訳, A5, 450p. \4800, ISBN 4-431-71056-6
D.S.Mitrinovic': "Analytical Inequalities", Springer-Verlag (1970)
482:132人目の素数さん
04/10/11 19:57:11
>>442(7) は、最小値の方は出ないでしょうか?
483:132人目の素数さん
04/10/11 21:19:56
>482
a,b,cのうち1つだけ→0 のとき →0 と思われ...
ぬるぽ
484:132人目の素数さん
04/10/13 04:14:43
Mを正定数, a,b,cを実定数とする。
f(x)=ax^2+bx+c において |f(-1)|, |f(0)|, |f(1)|≦M ならば、
|x|≦1において |f(x)|≦5M/4 を示せ。
こやつめをたのもー。
a=0 のときは f(x) は一次式以下だから、区間の端点で最大最小値をとるので
|f(x)| ≦ max{|f(-1)|, |f(1)|} = M
a>0のときを考える。(a<0のときも同様にできる)
このとき f(x) は下に凸だから、グラフを考えると
|f(x)| ≦ max{|f(-1)|, |f(-b/{2a})|, |f(1)|} = \max{M, |f(-b/{2a})|}
ということで、|f(-b/{2a})|≦5/4 を示せれば一件落着だと思うのだけど、
そのあとが分からんちん。
485:132人目の素数さん
04/10/13 06:14:32
訂正
>ということで、|f(-b/{2a})|≦5M/4 を示せれば…
軸の位置によって、|-b/(2a)|>1のときは
|f(x)| ≦ max{|f(-1)|, |f(1)|} ≦ M
|-b/(2a)|≦1のときは、D=b^2-4ac≧0のときには、
|f(-b/{2a})| の最大値を考えないといけないんだけど
|f(-b/{2a})| = |-b^2/(4a)+c| ≦ (|b|/2)*|b/2a|+|c| ≦ (M/2)*1+M = 3M/2
ここで、|2b|=|f(1)-f(-1)|≦2M、|c|=|f(0)|≦M を用いた。
5M/4にならんのですが…。
486: ◆BhMath2chk
04/10/13 08:00:00
|f(x)|
=|f(-1)x(x-1)/2+f(0)(1-x^2)+f(1)x(x+1)/2|
≦M(|x(x-1)/2|+|1-x^2|+|x(x+1)/2|)。
-1≦x≦0のとき
|x(x-1)/2|+|1-x^2|+|x(x+1)/2|
=1-x-x^2
≦5/4。
0≦x≦1のとき
|x(x-1)/2|+|1-x^2|+|x(x+1)/2|
=1+x-x^2
≦5/4。
487:132人目の素数さん
04/10/13 10:05:09
>486
なるほど、その手がありましたか! 激しくありがとうございます。
係数 a,b,c を f(-1), f(0), f(1) で表すんですね。
この条件の下で、同様に考えると |x|≦1において |f'(x)|≦4M
また、g(x)=cx^2+bx+a を考えると、|x|≦1において |g(x)|≦9M/4, |g'(x)|≦3M
となりますね。たぶん。
488:132人目の素数さん
04/10/13 10:09:58
[1992 MeXico]
正の数 a,b,c が a+b+c=3 をみたすとき、次の不等式を示せ。
6 < \sqrt{2x+3}+\sqrt{2y+3}+\sqrt{2z+3} ≦ 3\sqrt{5}
右側は Cauchy-Schwarz でも Jensen の不等式でも得られますが、
左側は一体どうやるのでせうか? たのも~。
489:132人目の素数さん
04/10/13 11:30:30
>487の訂正。
ぬーん、|g(x)|≦2M なのか…。
類題発見。京大1995後期理系3番
URLリンク(hw001.gate01.com)
はっきり言って、a≧0, b≧0 の条件は要らない。
絶対値がついているから a の符号はどっちでもいいし、
x=t,-tの場合を考えれば、bの符号もどうとでもなるし。
|f(x)|≦M の条件は強すぎると思う。
3箇所、例えば |f(-1)|, |f(0)|, |f(1)| ≦ M で十分じゃないの?
490:132人目の素数さん
04/10/13 13:33:42
>488
√ は上に凸ゆえ 0<x<3 ⇒ (3+x)/2 < √(2x+3)
辺々たす。
(3+2√3 も可能)
ぬるぽ
491:132人目の素数さん
04/10/13 16:38:13
>490
ありがとうございまする。
0<x<3 において、y=(3+x)/2 と y=√(2x+3) のグラフを考えるんですね?
y=(3+√3)x/3 +√3 と y=√(2x+3) のグラフから、3+2√3 を出したんですね
|
\ __ /
_ (m) _ピコーン
|ミ|
/___\
./ ≧ \
|:::: \ ./ | そうか!
|::::: (● (● |
ヽ::::... .ワ.....ノ
492:132人目の素数さん
04/10/15 06:43:55
(1) 正の数 a,b,c が abc=1 をみたすとき、
(1+a)(1+b)(1+c) ≧ 2(1+\sqrt[3]{b/a}+\sqrt[3]{c/b}+\sqrt[3]{a/c})
(2) x>0 に対し、
[(x+ 1/x)^6-(x^6+ 1/{x^6})-2]/[(x+ 1/x)^3+(x^3+ 1/{x^3})] ≧ 6
(3) 1≦a≦b≦c≦4のとき、
(a-1)^2 + (b/a -1)^2 + (c/b -1)^2 + (4/c -1)^2 ≧ 12-8√2
___
|┃三 ./ nCr \ ________
|┃ |:::: \ ./ | /
|┃ ≡|::::: (● (●| < ハァハァ /lァ/lァ
____.|ミ\_ヽ::::... .∀....ノ \
|┃=__ \  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
|┃ ≡ ) 人 \ ガラッ
493:132人目の素数さん
04/10/15 12:17:01
>492
(1) 相加相乗平均より (b/a)^r +(c/b)^r +(a/c)^r ≧3.
左辺 = -1+(b+1 +1/a)+(c+1 +1/b)+(a +1/c) ≧ -1 +3{(b/a)^(1/3) +(c/b)^(1/3) +(a/c)^(1/3)}
≧ 2 + 2{(b/a)^(1/3) +(c/b)^(1/3) +(a/c)^(1/3)} = 右辺.
(2) x^6 +1/(x^6) +2 = {x^3 +1/(x^3)}^2 より,
左辺 = (x+ 1/x)^3 - {x^3+ 1/(x^3)} = t^3 -(t^2 -3)t = 3t ??
(3) Σ[k=1,n](x_k)^2 - (1/n){Σ[k=1,n] x_k}^2 = (1/n)Σ[i≠j] (x_i-x_j)^2 ≧0 より
左辺 ≧ 4{(a/1 +b/a +c/b +4/c)/4 -1}^2 ≧ 4([4^(1/4)] -1}^2 = 4(√2 -1)^2 = 4(3-2√2) = 右辺.
ぬるぽ
494:493
04/10/15 12:19:58
訂正
(2) 左辺 = (x+ 1/x)^3 - {x^3+ 1/(x^3)} = 3(x +1/x) ≧ 6.
495:132人目の素数さん
04/10/15 19:47:10
>492
(1) [442]の(5)と同じ...
(3) r>1 のとき y=x^r は下に凸ゆえ、 {Σ[k=1,n](x_k)^r}/n ≧ {(Σ[k=1,n] x_k)/n}^r.
∴ Π[k=1,n] a_k =P ⇒ Σ[k=1,n] (a_k -1)^r ≧ n{(1/n)(Σ[k=1,n] a_k) -1}^r ≧ n{P^(1/n) -1}^r
496:132人目の素数さん
04/10/15 20:20:16
>493-495
(゚∀゚) うひょっ! ありがとうございます。
(1)が442(5)と同じことに気づかなかったです…。
497:132人目の素数さん
04/10/17 10:32:00
(1) 0≦a,b,c,d≦1 と 0≦x≦1 に対して
1/|x-a| + 1/|x-b| + 1/|x-c| + 1/|x-d| < 40
(2) [ASU 1969.14] 正の数 a_k に対して
a_1/(a_2+a_3) + a_2/(a_3+a_4) + … + a_n/(a_1+a_2) ≧ n/4
___
./ ≧ \ (2)を見ると Shapiro の巡回不等式を思い出すけど…。
|:::: \ ./ | ハァハァ
|::::: (● (● |
ヽ::::... .∀....ノ / チン ☆
_( ⊃ ⊃ チン ☆
|\ ̄ ̄ ̄ ̄旦 ̄\
| | ̄ ̄ ̄ ̄ ̄ ̄ ̄|
\| 愛媛みかん |
498:132人目の素数さん
04/10/17 10:46:50
(3) [Ukrine 1992]
a≧b≧c>0 のとき
(a^2-b^2)/c + (b^2+c^2)/a + (c^2-a^2)/b ≧ 3a-4b+c
(4) a≧b≧c≧d>0, a+b+c+d≧1 のとき
7a^2+5b^2+3c^2+d≧1
(5) [Vietnam 1980]
正の数 a_k が a_1+ … +a_n=s をみたすとき
{a_1+ 1/(a_1)}^2 + … +{a_n+ 1/(a_n)}^2 ≧ n{n/s + s/n}^2
499:132人目の素数さん
04/10/17 23:51:40
>498
(3) 因数定理より (a^2 -b^2)/c + (b^2 -c^2)/a +(c^2 -a^2)/b = (a-b)(b-c)(a-c)(a+b+c)/abc.
(2/3)a = b = c のとき 左辺 = 2(c^2)/a = (8/9)a < a = 右辺. むずい??
(4) a≧d≧0, b≧c≧0 より、左辺 ≧ 4(a^2 +b^2 +c^2 +d^2) ≧ (a+b+c+d)^2 ≧ 1.
(5) r≧1 ⇔ (x_1)^r +(x_2)^r +・・・・・+(x_n)^r ≧ n{(x_1 +x_2 +・・・・・+ x_n)/n}^r
調和≦相加 より (1/n){1/(a_1) + 1/(a_2) +・・・・+ 1/(a_n)} ≧ n/s.
ぬるぽ
500:132人目の素数さん
04/10/18 14:32:30
>499(4) その手があったか、さすが! /lァ/lァ
501:132人目の素数さん
04/10/19 21:40:20
>497
(2) 左辺をSとおく。
a/(b+c) +2b/(c+d) - {(a+b)/(b+c) + (b+c)/(c+d) -1} = (b^2 +cd)/[(b+c)(c+d)] >0.
∴ a/(b+c) +2b/(c+d) > (a+b)/(b+c) + (b+c)/(c+d) -1.
循環的に加えて相加・相乗平均を使えば
3S > 2Σ[k=1,n] (a_k +a_{k+1})/(a_{k+1} +a_{k+2}) -n > 2n-n = n.
ただし a_{n+1}=a_1, a_{n+2}=a_2 とした。
∴ S≧ n/3.
ぬるぽ
502:132人目の素数さん
04/10/20 07:13:38
>501 a/(b+c) +2b/(c+d) > (a+b)/(b+c) + (b+c)/(c+d) -1
不等式神キタ━(゚∀゚)━!!!
こんな不等式、自力では逆立ちしても思いつきませんです。 (;´Д`) ハァハァ
ゝ_i/ / // / | l / ! | l i 〉' ⌒⌒_/
「ミ| / /ィ'「´! ! l l 」___| l |l _,くミ 、_/ ̄´
〈 j | ハ{ ,l-ニ!、 | l | ,|=、|ヽ|l/! 'ヽ,-ァ
ヽ } j' {i'r':j! ,.=、ヾ!/ r'
| i' ,, ゞ=' i!-':i! i!' /
┃ ┏━┃ { ト、 r‐‐- 、_゙''=' / / /. ┃┃┃
━┏┛ ┏━┃ ━━━ト、 ノ ━━━━┛ ┃┃┃
━┏┛ ┛ ┃ .〉/ / ( `ー-ァ' .r「 / / /. ┛┛┛
┛ ┃ l/ /_____ゝ<´ l | ∧ ' i/ ┛┛┛
∧--‐‐‐''"ヽヽ_! | 〉 /
/ト、 @/ ヽ_/ /`-/
/ ! ヽ { r.‐‐‐┐ / /
j @ l !(゚∀゚)l / /
503:132人目の素数さん
04/10/20 12:38:57
[477] 正の数 a,b,c に対して、次の不等式を示せ。
1/{a(1+b)} + 1/{b(1+c)} + 1/{c(1+a)} ≧ 3/(1+abc)
(解1) 次式を整理すれば得られる。 こんなもの思いつかんわい!
ab(1+b)(1-ca)^2+bc(1+c)(1-ab)^2+ca(1+c)(1-ab)^2 ≧ 0
(解2) 相加相乗平均の関係を用いる。 簡単だが気づかんわい!
(1+abc)(左辺)+3
= {(1+abc)/(a+ab)+1} + {(1+abc)/(b+bc)+1} + {(1+abc)/(c+ca)+1}
= {(1+a)/(a+ab) + (b+bc)/(1+b)} + {(1+b)/(b+bc) + (c+ca)/(1+c)} + {(1+c)/(c+ca) + (c+ca)/(1+a)}
= {(1+a)/(a+ab) + (a+ab)/(1+a)} + {(1+b)/(b+bc) + (b+bc)/(1+b)} + {(1+c)/(c+ca) + (c+ca)/(1+c)}
≧ 6
(解3) 並べ替え不等式 (同順序積)≧(逆順序積) を用いる。かっこよすぎ!
(1+abc)(左辺)
= (1/a)*{1/(1+b)}+b*{1/(1+ 1/a)} + (1/b)*{1/(1+c)}+c*{1/(1+ 1/b)} + (1/c)*{1/(1+a)}+a*{1/(1+ 1/c)}
≧ (1/a)*{1/(1+ 1/a)}+b*{1/(1+b)} + (1/b)*{1/(1+ 1/b)}+c*{1/(1+c)} + (1/c)*{1/(1+ 1/c)}+a*{1/(1+a)}
= 1/(1+a) + a/(1+a) + 1/(1+b) + b/(1+b) + 1/(1+c) + c/(1+c)
= 3
(元ネタ) URLリンク(www.komal.hu)
___
|┃三 ./ nCr \ ________
|┃ |:::: \ ./ | /
|┃ ≡|::::: (● (●| < ハァハァ /lァ/lァ
____.|ミ\_ヽ::::... .∀....ノ \
|┃=__ \  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
|┃ ≡ ) 人 \ ガラッ
504:501
04/10/20 21:41:05
>503
【補題】a,b,c>0 のとき、u=(abc)^(1/3)とおくと
1/{a(1+b)} + 1/{b(1+c)} + 1/{c(1+a)} ≧ 3/{u(1+u)}.
(略証)(解2)と同様に 1+abc = (1+a) -a(1+b) +ab(1+c).
∴ (1+abc)/{a(1+b)} = (1+a)/{a(1+b)} -1 +b(1+c)/(1+b).
循環的に加えて相加・相乗平均を使えば
(1+abc)(左辺) ≧ 3(1/u -1 +u) = 3(1+u^3)/{u(1+u)}
∴ 左辺 ≧ 3/{u(1+u)} (終).
なお、3/{u(1+u)} ≧ 3/(1+u^3) = 3/(1+abc) は (1+u^3)-u(1+u) = (1-u)(1-u^2) ≧0 から明らか。
505:132人目の素数さん
04/10/20 22:00:01
. + . * / ̄ ̄ ̄ ̄ ̄ ̄\ ■ ■
■ ■■■ . / _ノ ≧ ,_ノ\ .+ ☆ . ■ ■
■■■■ ■ ■ / / iニ)ヽ, /rj:ヽヽ ヽ ■ ■
■ ■ ■ ■■■■■■■l::::::::: ;〈 !:::::::c! ' {.::::::;、! 〉 .|■■■■■■■■ ■ ■
.■■■■ ■ ■■ |:::::::::: (つ`''" `'ー''(つ | ■ ■
■ ■ +. ☆ 。. . |::::::::::::::::: \___/ | ☆ . * +.
■ ■ ヽ:::::::::::::::::::. \/ ノ . . . +☆ .● ●
506:132人目の素数さん
04/10/21 13:41:11
[442](2) a,b,c,d>0に対し
\sqrt{(a^2+b^2+c^2+d^2)/4} ≧ \sqrt[3]{(abc+bcd+cda+dab)/4}
ここで、次式が成り立つ。
(a+b+c+d)/4 ≧ \sqrt{(ab+bc+cd+da)/4}
ということで、次の2つの大小関係は定まりますか?
\sqrt[3]{(abc+bcd+cda+dab)/4}, \sqrt{(ab+bc+cd+da)/4}
507:132人目の素数さん
04/10/21 13:48:36
あぁ書き忘れた。もう一回書き直すと
[473](2)と[506]の真ん中より、a,b,c,d>0 に対し
\sqrt{(a^2 +b^2 +c^2 +d^2)/4} ≧ (a+b+c+d)/4 ≧ \sqrt[3]{(abc+bcd+cda+dab)/4}
(a+b+c+d)/4 ≧ \sqrt{(ab+bc+cd+da)/4}
右側の2つは比較できないかなと言うことでした。
508:132人目の素数さん
04/10/21 14:24:32
>506-507
>>455 (474), >>480 の辺りにないか?
ぬるぽ
509:508
04/10/21 18:01:28
>506
Q. 次の2つの大小関係は定まりますか?
{(abc+bcd+cda+dab)/4}^(1/3), sqrt{(ab+bc+cd+da)/4}
A. 定まらないと思われ...
a=b≠c=d のとき, 左辺 = {ac(a+c)/2}^(1/3) < (a+c)/2 = 右辺.
a=c≠b=d のとき, 左辺 = {ab(a+b)/2}^(1/3) > sqrt(ab) = 右辺.
a=b=c≠d のとき, 左辺 = {a^2・(a+3d)/4}^(1/3) < sqrt{a(a+d)/2} = 右辺.
∵ {a・[(a+3d)/4]^2}^(1/3) < (a+d)/2. より {a^(1/2)・(a+3d)/4}^(1/3) < sqrt{(a+d)/2}.
ぬるぽ
510:132人目の素数さん
04/10/21 21:59:25
なるほど、ありがとうございまする。
511:132人目の素数さん
04/10/22 08:27:32
[>>455] の不等号の根号の中身は逆ですね。正しくは
\sqrt{(ab+ac+ad+bc+bd+cd)/6} ≧ \sqrt[3]{(abc+bcd+cda+dab)/4}
死んでお詫びを…(AA略) まとめると、こんな感じですか。
A = \sqrt{(a^2 +b^2 +c^2 +d^2)/4}
B = (a+b+c+d)/4
C = \sqrt{(ab+ac+ad+bc+bd+cd)/6}
D = \sqrt[3]{(abc+bcd+cda+dab)/4}
E = \sqrt{(ab+bc+cd+da)/4}
F = \sqrt[4]{abcd}
A ≧ B ≧ C ≧ D ≧ F
B ≧ E ≧ F
CとE、DとEの大小は定まらない。
512:132人目の素数さん
04/10/22 16:16:30
あげ
513:480
04/10/22 20:30:31
>511 ついでに
C ≧ {(C^4)/B}^(1/3) ≧ D ≧ {C(F^2)}^(1/3) ≧ F.
>492,503
なぜかnCrヲタがやって来る...
ぬるぽ
514:132人目の素数さん
04/10/23 02:15:00
a,b,c,d,p,q,r,s>0 かつ a + b + c + d = 1 かつ p + q + r + s = 1 のとき,
a log(a/p) + b log(b/q) + c log(c/r) + d log(d/s) ≧ 0 を示せ.
515:514
04/10/23 02:16:05
log は自然対数.
516:132人目の素数さん
04/10/23 05:40:00
>515
下に凸なf(x)=log(1/x)に対して、Jensenの不等式を用いると
af(a/p)+bf(b/q)+cf(c/r)+df(d/s)
≧ f(a*(p/a)+b*(q/b)+c*(r/c)+d*(s/d))
= f(p+q+r+s)
= 0 ___
|┃三 ./ ≧ \ ________
|┃ |:::: \ ./ | / 不等式と聞いちゃぁ
|┃ ≡|::::: (● (●| < 黙っちゃゐられねゑ…
____.|ミ\_ヽ::::... .∀....ノ \ ハァハァ /lァ/lァ
|┃=__ \  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
|┃ ≡ ) 人 \ ガラッ
517:132人目の素数さん
04/10/23 05:53:20
>513
さすが不等式神ッ! 常に一歩先を行くぅ~。そこに痺れる憧れるぅ~。
3変数でやると、A ≧ B ≧ C ≧ D が成立。ただし
A = (a+b+c)/3
B = \sqrt[3]{(a+b)(b+c)(c+a)/8}
C = \sqrt{(ab+bc+ca)/3}
D = \sqrt[3]{abc}
(AAの額が nCr だったのは、言われるまで気づかなかったミス。
不等式ヲタ = nCrヲタ = 三角関数ヲタ = 関数方程式ヲタ なのは公然の秘密)
518:132人目の素数さん
04/10/23 07:16:09
>>516
お見事!
519:132人目の素数さん
04/10/23 07:28:47
【問題A】 正の数 a,b,c が ab+bc+ca=1 をみたすとき
(1) [1994 Hong Kong]
a(1-b^2)(1-c^2)+b(1-c^2)(1-a^2)+c(1-a^2)(1-b^2) ≦ (4√3)/9
(2)
a/(1+a^2) + b/(1+b^2) + c/(1+c^2)
≧ 2a(1-a^2)/{(1+a^2)^2} + 2b(1-b^2)/{(1+b^2)^2} + 2c(1-c^2)/{(1+c^2)^2}
【問題B】 正の数 a,b,c が abc=1 をみたすとき
(3) [1997 Romania]
(a^3+b^3)/(a^2+ab+b^2) + (b^3+c^3)/(b^2+bc+c^2) + (c^3+a^3)/(c^2+ca+a^2) ≧ 2
(4) [2000 Hong Kong] さらに a≧b≧c のとき
(1+ab^2)/(c^3) + (1+bc^2)/(a^3) + (1+ca^2)/(b^3) ≧ 18/(a^3+b^3+c^3)
【問題C】 正の数 a,b,c が a^2+b^2+c^2=s をみたすとき
(5) [1991 Poland] s=2のとき、a+b+c ≦ 2+abc
(6) [1999 Belarus] s=3のとき、1/(1+ab) + 1/(1+bc) + 1/(1+ca) ≧ 3/2
| | | | |┃| :|
| | | | |┃|i | / 条件不等式と聞いちゃあ
| | | | ガタガタ |┃| < 黙っちゃゐられねゑ…
| | | |______|ミ | .i.| | ? 開かない・・・?
| | ̄ ̄ ̄ ̄ ̄ ̄| | |┃|:. ,| \
| | | | |┃| i|
520:513
04/10/23 16:08:27
>517
そこまで言われるとつい....でに
A ≧ B ≧ (AC^2)^(1/3) ≧ C ≧ {(C^4)/A}^(1/3) ≧ D.
(略証)相加・相乗平均を使う。
A = (1/2){(a+b)+(b+c)+(c+a)}/3} ≧ B
A ≧ D, C ≧D より
B^3 = (a+b)(b+c)(c+a)/8 = [(a+b+c)(ab+bc+ca) -abc]/8 = (9AC^2 -D^3)/8 ≧ AC^2,
∴ B ≧ (AC^2)^(1/3).
A^2 = (1/9)(a+b+c)^2 ≧ (ab+bc+ca)/3 = C^2.
∴ (AC^2)^(1/3) ≧ C ≧ {(C^4)/A}^(1/3).
C^4 = {(ab+bc+ca)/3}^2 = {(x+y+z)/3}^2 ≧ (xy+yz+zx)/3 = [(a+b+c)/3]abc = A(D^3),
∴ {(C^4)/A}^(1/3) ≧ D.
ぬるぽ
521:問題追加
04/10/23 21:50:40
【問題D】正の数 a,b,c に対して
(7) [1997 Ireland] a+b+c≧abc のとき、a^2+b^2+c^2 ≧ abc
>520 キタ━(゚∀゚)━!!!
522:追加と疑問?
04/10/24 06:17:45
【問題B】 に追加。 正の数 a,b,c が abc=1 をみたすとき
(8) [1997 TOT]
1 ≧ 1/(1+a+b) + 1/(1+b+c) + 1/(1+c+a)
(9) [1997 Bulgaria]
1/(2+a) + 1/(2+b) + 1/(2+c) ≧ 1/(1+a+b) + 1/(1+b+c) + 1/(1+c+a)
この2つの不等式は、一つにまとめられそうな予感。でも、どうなるんでしょう?
___
./ ≧ \ 神降臨待ち
|:::: \ ./ | ハァハァ
|::::: (● (● |
ヽ::::... .∀....ノ / チン ☆
_( ⊃ ⊃ チン ☆
|\ ̄ ̄ ̄ ̄旦 ̄\
| | ̄ ̄ ̄ ̄ ̄ ̄ ̄|
\| 愛媛みかん |
 ̄ ̄ ̄ ̄ ̄ ̄ ̄
523:132人目の素数さん
04/10/24 08:22:43
Youngの不等式の多変数バージョンってあったっけ?
524:132人目の素数さん
04/10/24 09:09:12
>523 見たことないです。
>522 (8)(9) できた。
正の数 a,b,c が abc=1 をみたすとき、次式が成立。
1 ≧ 1/(2+a) + 1/(2+b) + 1/(2+c) ≧ 1/(1+a+b) + 1/(1+b+c) + 1/(1+c+a)
〔証明〕
a+b+c=x, ab+bc+ca=y, abc=1 を用いると、示すべき不等式は
1 ≧ (4x+y+12)/(4x+2y+9) ≧ (x^2+4x+y+3)/(x^2+xy+2x+y)
ただし、相加平均・相乗平均の関係から x, y≧3 に注意する。
(左側) 示すべき不等式は y≧3 だから成立。
(右側) x-3=s, y-3=t とおくと s, t≧0。分母を払って差をとると
(4x+y+12)(x^2+xy+2x+y)-(4x+2y+9)(x^2+4x+y+3)
= 3x^2y+xy^2+6xy-5x^2-y^2-24x-3y-27
= 3s^2t+st^2+30st+4s^2+2t^2+27s+54t
≧ 0
|
\ __ /
_ (m) _ピコーン
|ミ|
/___\ 等号成立条件は、いずれも a=b=c=1 のとき。
./ ≧ \
|:::: \ ./ | 簡単でした。
|::::: (● (● |
ヽ::::... .ワ.....ノ
525:501
04/10/24 10:42:43
>497 (1)
0≦a≦b≦c≦d≦1 は所与とする。
(1+a)-d, d-c, c-b, b-a の和が1だから
Max{(1+a)-d, d-c, c-b, b-a} = w ≧1/4.
そこで xとして 幅wの区間の中点をとると、
Min{|x-a|,|x-b|,|x-c|,|x-d|} = w/2 ≧ 1/8.
左辺 < 8+8+8+8 = 32.
ぬるぽ
526:132人目の素数さん
04/10/24 19:49:31
___ >525 グッジョブ!
./ ≧ \ いつもながら素晴らしい!結局こうですね。
|:::: \ ./ |
|::::: (● (● | 4 ≦ 1/|x-a| + 1/|x-b| + 1/|x-c| + 1/|x-d| ≦ 32
ヽ::::... .ワ....ノ n
 ̄ ̄ \ ( E)
フ /ヽ ヽ_//
527:132人目の素数さん
04/10/25 10:32:44
>>525
いや、やっぱり分かりません。
たとえば a = b = c = d = 0 のとき、
(左辺) < 4/|x| → ∞ (x→0)
だから、いくらでも大きくなるような気がします。
528:132人目の素数さん
04/10/25 12:42:54
>525 2-3行目は
1-d, d-c, c-b, b-a, a-0 の和が1だから
Max{1-d, d-c, c-b, b-a, a} = w ≧1/5
とすべきでは?
まだ問題の意味が分かってないけれど…
529:132人目の素数さん
04/10/25 13:44:48
いや、525でよかった。すみません。
530:132人目の素数さん
04/10/26 08:02:16
>519 (3~7)
【問題B】 abc=u≧1 のとき
(3) 3(a^2 -ab+b^2) - (a^2 +ab+b^2) = (a-b)^2 +(b-c)^2 +(c-a)^2 ≧0.
∴ (a^3 +b^3)/(a^2 +ab+b^2) ≧ (a+b)/3.
∴ 左辺 ≧ 2(a+b+c)/3 ≧2u^(1/3).
(4) 左辺 ={1/(a^3)+1/(b^3)+1/(c^3)} + {a(b^2)/(c^3) +b(c^2)/(a^3) +c(a^2)/(b^3)}
≧ 3/u +1 ≧ 6/u ≧ 右辺.
【問題C】a^2 +b^2 +c^2 =s のとき
(5)
(i) a,b,c≦1 のとき、
左辺 = 3-(1-a)-(1-b)-(1-c) ≦ 3-(1-a)-a(1-b)-ab(1-c) = 3 -(1-abc) =右辺.
(ii) a,b≦1<c,s≦2 のとき、x = {1+x^2 - (1-x)^2}/2 より
左辺 = {3+s-(1-a)^2 -(1-b)^2 -(c-1)^2}/2 = 1 +s/2 +ab -{(a+b-1)^2 +(c-1)^2}/2
= 1 +s/2 +abc -{(a+b-1)^2 +(c-1)^2 +ab(c-1)}/2 ≦ 1 +s/2 +abc ≦ 右辺.
(6) 左辺 ≧ 9/(3+ab+bc+ca) ≧ 9/(3+s) = 右辺.
【問題D】(a+b+c)/(abc)=k のとき
(7) 左辺 ≧ 3{(a+b+c)/3}^2 ≧ √{3(a+b+c)(abc)}=√(3k)・abc
ぬるぽ
531:501=525
04/10/26 09:19:52
>526
まだまだ改良できると思われ...
1/4≦w≦1/2 のとき: 幅wの区間の反対側の区間幅≦w, 残り2つの幅の合計x+y≧1-2w.
左辺 = 2/(w/2) +1/{(w/2)+x} +1/{(w/2)+y}
(i) 1/4≦w≦1/3 のとき x,y≧1-3w
左辺 ≦ 2/(w/2) +1/{(w/2)+w} +1/{(w/2)+(1-3w)} = (4 +2/3)/w +2/(2-5w) ≦ 64/3.
(ii) 1/3≦w≦1/2 のとき x,y≧0
左辺 ≦ 3/(w/2) +1/{(w/2)+(1-2w)} = 6/w +2/(2-3w) ≦ 18+2 = 20.
(iii) 1/2<w のとき
左辺 ≦ 4/(w/2) =8/w ≦ 16.
ぬるぽ
532:132人目の素数さん
04/10/26 14:50:31
>530
神キタ━(゚∀゚)━!!!
(3) 書き間違いですね。 3(a^2 -ab+b^2) - (a^2 +ab+b^2) = 2(a-b)^2
(5) ですが、元の問題みたら、a,b,c の条件は実数でした。 死んでお詫びを…。
(7) そんな手があるとは…。
むずぽ
533:530
04/10/26 21:54:44
>532
(3)は仰せのとおり。 死んでお詫びを...(AA略)
(5)の修正でつ
(i) -1≦a,b,c≦1 のときは変更なし...
(ii) -1≦a,b≦1<c のとき、d≡ a+b-1 = ab-(1-a)(1-b)≦ab より
右辺 - 左辺 = {(a+b-1)^2 +(c-1)^2 +ab(c-1)}/2 ≧ {d^2 +(c-1)^2 +(c-1)d}/2 ≧0.
(iii) c<-1≦a,b≦1 のとき、 左辺 = (a+b+|c|) +2c ≦ 2 +(ab-2)|c| ≦ 2-ab|c| = 右辺.
(7)は 相加・相乗平均 {(a+b+c)/3}^(3/2) ≧ √{abc} を使いますた。 ハァハァ
ぬるぽ
534:533
04/10/27 08:04:30
(5) またまた修正
(ii) 右辺 - 左辺 = (1 +s/2 +abc) - (a+b+c) = (1/2)(a+b+c-2)^2 + (1-a)(1-b)(c-1) ≧ 0.
すまそ
535:132人目の素数さん
04/10/27 12:24:51
>534
>右辺 - 左辺 = (1/2)(a+b+c-2)^2 + (1-a)(1-b)(c-1)
すげー! こんな変形 気づきません。(;´д`)ハァハァ
536:132人目の素数さん
04/10/28 14:21:43
正の数 a, b, c が a^2+b^2+c^2=1 をみたすとき、次式の最小値をキボンヌ。
(a^5)/(b+c) + (b^5)/(c+a) + (c^5)/(a+b)
巡回的に対称だから、a≧b≧c または a≧c≧b としてよい。
前者のとき a/(b+c)≧b/(c+a)≧c/(a+b)、
後者のとき a/(b+c)≧c/(a+b)≧b/(c+a) だから、
チェビシェフの不等式により、どちらも次の同じ不等式を得る。
与式 ≧ (1/3)(a^4+b^4+c^4){a/(b+c) + b/(c+a) + c/(a+b)}
3(a^4+b^4+c^4)-(a^2+b^2+c^2) = (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2 ≧ 0 より
a^4+b^4+c^4 ≧ (1/3)(a^2+b^2+c^2)^2 = 1/3
あとは、a/(b+c) + b/(c+a) + c/(a+b) の最小値が分かれば…。 たのも~!
r~~~~~~~~~~~
__ _ノ このあと、どうすれば・・・
/__ `ヽ_ ⌒ヽ~~~~~~~~~~~
|〈___ノf レ1(
,L| しL.し'゙"
"` "′
537:536
04/10/28 14:44:50
自己解決。 Jensenで瞬殺だった。
538:132人目の素数さん
04/10/28 15:14:18
ついでに条件不等式を投下。 [>>519(1)(2)]もたのも~。
(1) [1996 Poland]
a, b, c≧-3/4、a+b+c=1 のとき、a/(1+a^2) + b/(1+b^2) + c/(1+c^2) ≦ 9/10
(2) [1998 Poland]
a, b, c, d, e, f>0、a+b+c+d+e+f=1、ace+bdf≧1/108 のとき、abc+bcd+cde+def+efa+fab ≦ 1/36
も一つおまけに絶対不等式を投下。
(3) [1992 Poland]
実数 a, b, c に対して、(a+b-c)^2(b+c-a)^2(c+a-b)^2 ≧ (a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2)
| |∥│||
┌― | |∥│|| ―┬──
| | |∥│|| |
| | | ̄ ̄ ̄ 不等式と聞いちゃあ
| / ̄ ̄∨ヽ. | | 黙っちゃゐられねゑ…
| / ∨. | |___
| /___________ヽ |ガシャン
| / | \/_|ヽ |
| | | ゚| □| \.| ← 不等式ヲタ
| | | ゚| |\__|つ
| | | ゚| | |
539:538
04/10/28 15:23:52
書き忘れ。上の問題はここにありまつ。模範解答はないけど…。(;´д`)ハァハァ
URLリンク(www.mimuw.edu.pl)
540:132人目の素数さん
04/10/28 19:26:22
>538
(2) [1998 Poland] 49th, 2nd round, 1st day(1998.2.27), No.3a
a+d>0, b+e>0, c+f>0, a+b+c+d+e+f=s, ace+bdf=u のとき、相加相乗平均より
左辺 =(a+d)(b+e)(c+f) -(ace+bdf) ≦ {[(a+d)+(b+e)+(c+f)]/3}^3 -(ace+bdf)=(s/3)^3 -u.
URLリンク(www.mimuw.edu.pl)
ついでに >>519
【問題A】 ab+bc+ca=t とおく。
(1) t≧1, a+b+c≧√(3t), abc≦(t/3)^(3/2) を使って
左辺 = (a+b+c)-a(ca+ab)-b(ab+bc)-c(bc+ca)+abct = (1-t)(a+b+c) + (3+t)abc
≧ (1-t)√(3t) + (3+t)・(t/3)^(3/2) = √(3t)・(1-t/3)^2.
ぬるぽ
541:501=504
04/10/28 20:19:36
>536
よけいなお世話だが...
(解1) b+c=A, c+a=B, a+b=C とおくと a=(B+C-A)/2, b=(C+A-B)/2, c=(A+B-C)/2.
∴ a/(b+c) = (B/A + C/A -1)/2.
循環的に加えて相加・相乗平均を使えば、
左辺 ≧ (3+3-3)/2 = 3/2.
(解2)通分して a(c+a)(a+b) +b(a+b)(b+c) +c(b+c)(c+a) - (3/2)(b+c)(c+a)(a+b)
= (1/2){(a-b)(a^2 -b^2) +(b-c)(b^2 -c^2) +(c-a)(c^2 -a^2)} ≧0.
ぬるぽ
542:132人目の素数さん
04/10/28 23:55:27
>541 神キタ━(゚∀゚)━!!!
ありがとうございまする。解法のコレクションが増えました。
今更ながら >537 に書いた方法は…
a+b+c=s とおくと 0<s≦√6。 この範囲で任意に s を固定する。
f(x) = x/(s-x) = s/(s-x)-1 は 0<x<s において下に凸だから、
a/(b+c) + b/(c+a) + c/(a+b) = f(a)+f(b)+f(c) ≧ 3f((a+b+c)/3) = 3f(s/3) =3/2
となって、a=b=c (=1/√3) で最小値をとる。
543:132人目の素数さん
04/10/29 02:56:10
[>>519(2)] について…。
正の数 a, b, c が ab+bc+ca=1 をみたすとき
a/(1+a^2) + b/(1+b^2) + c/(1+c^2) ≧ 2a(1-a^2)/{(1+a^2)^2} + 2b(1-b^2)/{(1+b^2)^2} + 2c(1-c^2)/{(1+c^2)^2}
条件式から得られるものは、
(a+b+c)^2 ≧ 3(ab+bc+ca) = 3
a^2+b^2+c^2 ≧ ab+bc+ca = 1
1 = {(ab+bc+ca)/3}^(3/2) ≧ abc > 0
右辺の分子を 1-a^2 = (1+a^2)-2a^2 と変形して整理すると、示すべき不等式は
(4a^3)/(1+a^2)^2 + (4b^3)/(1+b^2)^2 + (4c^3)/(1+c^2)^2 ≧ a/(1+a^2) + b/(1+b^2) + c/(1+c^2) … (A)
右辺の分子を 1-a^2 = 2-(1+a^2) と変形して整理すると、示すべき不等式は
3a/(1+a^2) + 3b/(1+b^2) + 3c/(1+c^2) ≧ 4a/(1+a^2)^2 + 4b/(1+b^2)^2 + 4c/(1+c^2)^2 … (B)
(A), (B) のどちらか一方が示せればいいんだけど…。 むずぽ。
544:132人目の素数さん
04/10/29 03:06:40
a=cot(A),b=cot(B),c=cot(C)を満たす鋭角三角形ABCを考えたら?
545:543の続き
04/10/29 03:38:17
(A) の左辺にチェビシェフの不等式を用いると、
(Aの左辺)
= {(4a^2)/(1+a^2)}*{a/(1+a^2)} + {(4b^2)/(1+b^2)}*{b/(1+b^2)} + {(4c^2)/(1+c^2)}*{c/(1+c^2)}
≧ (1/3)*{(4a^2)/(1+a^2) + (4b^2)/(1+b^2) + (4c^2)/(1+c^2)}*{a/(1+a^2) + b/(1+b^2) + c/(1+c^2)}
となるから、次が示されれば…。
(1/3)*{(4a^2)/(1+a^2) + (4b^2)/(1+b^2) + (4c^2)/(1+c^2)} ≧ 1
(A) の左辺に、上とは別の方法でチェビシェフの不等式などを用いると、
(Aの左辺)
= 4a*{a/(1+a^2)}^2 + 4b{b/(1+b^2)}^2 + 4c*{c/(1+c^2)}^2
≧ (1/3)*(4a+4b+4c)*[{a/(1+a^2)}^2 + {b/(1+b^2)}^2 + {c/(1+c^2)}^2]
≧ (1/3)*(4a+4b+4c)*(1/3)*{a/(1+a^2) + b/(1+b^2)+ c/(1+c^2)]^2
≧ (4\sqrt{3}/9)*{a/(1+a^2) + b/(1+b^2)+ c/(1+c^2)]^2
となるから、次が示されれば…。
(4\sqrt{3}/9)*{a/(1+a^2) + b/(1+b^2)+ c/(1+c^2)] ≧ 1
どっちも むずぽ。
546:132人目の素数さん
04/10/29 03:39:35
>>544
下書きしているうちに レスが…。
ありがとうございます、考えてみまする。
547:132人目の素数さん
04/10/29 03:53:56
>540
> 左辺 =(a+d)(b+e)(c+f) -(ace+bdf)
この変形に勃起しました。 (;´д`)ハァハァ
548:540
04/10/29 20:54:45
>538
(1) [1996 Poland] 47th, 2nd round, 1st day(1996.2.23), No.3
曲線 y=x/(1+x^2) 上の点(1/3, 3/10)で接線を引く: y= (9/50)(1/3 +4x).
x≧-3/4 ⇒ x/(1+x^2) = (9/50)(1/3 +4x) - (18/25)(x+3/4)(x-1/3)^2 ≦ (9/50)(1/3 +4x).
x=a,b,c について加えれば、 左辺 ≦ (9/50){1+4(a+b+c)}.
URLリンク(www.mimuw.edu.pl)
ぬるぽ
>519 (1) 下の方の不等号が逆向き、すまそ。
549:132人目の素数さん
04/10/30 10:06:27
このスレ、まるで初等幾何のスレだな。
違うのは図が無いところだけ。
550:132人目の素数さん
04/10/30 11:46:19
>>549
それは簡単に言うと馬鹿にしているのですか?
551:132人目の素数さん
04/10/30 18:28:53
不等式を制する者は、解析を制する。
不等式は下からの評価が結構難しい。
552:working woman
04/10/30 18:34:40
マニアックな不等式をいくら積み重ねてもしようが無いわね。
553:132人目の素数さん
04/10/30 19:12:52
L^2 とか、uniform space の不等式を積み重ねなさいよ。
554:132人目の素数さん
04/10/31 01:03:17
L -‐ '´  ̄ `ヽ- 、 〉
/ ヽ\ /
// / / ヽヽ ヽ〈
ヽ、レ! { ム-t ハ li 、 i i }ト、
ハN | lヽ八l ヽjハVヽ、i j/ l !
/ハ. l ヽk== , r= 、ノルl lL」
ヽN、ハ l ┌‐┐ ゙l ノl l
ヽトjヽ、 ヽ_ノ ノ//レ′
r777777777tノ` ー r ´フ/′
j´ニゝ l|ヽ _/`\
〈 ‐ 書き込み lト、 / 〃ゝ、
〈、ネ.. .lF V=="/ イl.
ト | と思ったら ニヽ二/ l
ヽ.|l. 〈ー- ! `ヽ.
|l 荒らしでした lトニ、_ノ ヾ、
|l__________l| \ ソ
555:132人目の素数さん
04/10/31 01:05:54
>>554
それもking信者による荒らし。
working woman をNGワードしる!
556:132人目の素数さん
04/10/31 11:19:09
解けない人の妬みにしか聞こえんな。
557:132人目の素数さん
04/10/31 11:19:34
>>519 (2)
[544]の続き。 a=cot(A), b=cot(B), c=cot(C), 0<A,B,C<π/2.
A+B+C=π より
左辺 = (1/2){sin(2A)+sin(2B)+sin(2C)} = 2sin(A)sin(B)sin(C).
右辺 = (1/2){sin(4A)+sin(4B)+sin(2C)} = 2sin(2A)sin(2B)sin(2C).
右辺/左辺 = 8cos(A)cos(B)cos(C)
f(x)=cos(x) は [0,π/2) で正で上に凸なので、log|cos(x)| も上に凸(∵補題)
∴ 8cos(A)cos(B)cos(C) < 8{cos[(A+B+C)/3]}^3 = {2cos(π/3)}^3 = 1.
【補題】f(x)≧0 が上に凸ならば log|f(x)| も上に凸。
(略証){log|f(X)|} " = (f '/f) ' = {(ff " -(f ')^2}/(f^2) <0
[519] の解答のレス番(主なもの)
(1) 540 (2) 544+556 (3)~(7) 530 (8),(9) 524
ぬるぽ
558:557
04/10/31 17:48:54
[557]の後半を修正
右辺/左辺 = 8cos(A)cos(B)cos(C) ≦ {2[cos(A)+cos(B)+cos(C)]/3}^3
y=cos(x) は [0,π/2) で上に凸なので、
2[cos(A)+cos(B)+cos(C)]/3 ≦ 2cos[(A+B+C)/3] = 2cos(π/3) = 1.
すまそ
559:132人目の素数さん
04/10/31 19:09:38
>519 (2) について
うひょっ。㌧クスです。自分なりに解決しました。またもや Jensen を使いました。
正の数 a, b, c が ab+bc+ca=1 をみたすとき
a/(1+a^2) + b/(1+b^2) + c/(1+c^2) ≧ 2a(1-a^2)/{(1+a^2)^2} + 2b(1-b^2)/{(1+b^2)^2} + 2c(1-c^2)/{(1+c^2)^2}
>543(A) に書いたように同値変形して
(4a^3)/(1+a^2)^2 + (4b^3)/(1+b^2)^2 + (4c^3)/(1+c^2)^2 ≧ a/(1+a^2) + b/(1+b^2) + c/(1+c^2)
>545前半に書いたように、左辺にチェビシェフの不等式を用いて
(Aの左辺) ≧ (1/3)*{(4a^2)/(1+a^2) + (4b^2)/(1+b^2) + (4c^2)/(1+c^2)}*{a/(1+a^2) + b/(1+b^2) + c/(1+c^2)}
したがって、次式を示せばよい。
(1/3)*{(4a^2)/(1+a^2) + (4b^2)/(1+b^2) + (4c^2)/(1+c^2)} ≧ 1
同値変形して、結局 ab+bc+ca=1 をみたす正の数 a, b, c に対して、次を示せばよい。
1/(1+a^2) + 1/(1+b^2) + 1/(1+c^2) ≦ 9/4
f(x) = 1/(1+x) は x>0 において、下に凸な減少関数であることと、(a^2+b^2+c^2)/3 ≧ (ab+bc+ca)/3 =1/3 だから、
f(a^2)+f(b^2)+f(c^2) ≦ 3f((a^2+b^2+c^2)/3) ≦ 3f(1/3) = 9/4
___
./ ≧ \
|:::: \ ./ |
|::::: (● (● | グッジョブ!Jensen
ヽ::::... .ワ....ノ n
 ̄ ̄ \ ( E)
フ /ヽ ヽ_//
560:132人目の素数さん
04/11/01 03:19:45
>557-558 激乙。いつもありがとうございまする。
残るは >>538(3) ですね。またネタを探してきます。
561:132人目の素数さん
04/11/01 09:22:23
後で見るときに分かりやすいだろうから、一気に出しておきます。
とりあえず分類したものから、ボコッと投下。
発掘元は、>>539 や以下のサイトなど。(解答のないものばかり)
URLリンク(www.math.nwu.edu)
⊿ ○ ∇ 、___,、´`゙;~、 ';冫 ☆
┏ ━ゝヽ''/ ≧ \━〆A!゚━┓。
╋┓"〓┃ < ゝ\',冫。' |:::: \ ./ |゛△│´'´,.ゝ'┃. ●┃ ┃┃
┃┃_.━┛ヤ━━━|::::: (● (● |━━━━━ ━┛ ・ ・
∇ ┠─Σ- ヽ::::... .ワ.....ノ 冫 そ',´; ┨'゚,。
.。冫▽ < ⊂ ./⊃ 乙 ≧ ▽
。 ┃ Σ (⌒ゞ ,l, 、'' │ て く
┠─ム┼ ゝ,,ノ ノゝ. 、,, .┼ ァ Ζ┨ ミo''`
。、゚`。、 i/ レ' o。了 、'' × 个o
○ ┃ `、,~´+√ ▽ ',!ヽ.◇ o┃
┗〆━┷ Z,.' /┷━''o ヾo┷+\━┛,゛;
ヾ ⊿ '、´ ∇
562:絶対不等式など
04/11/01 09:23:26
再掲 >>538(3) [1992 Poland]
実数 a, b, c に対して、(a+b-c)^2(b+c-a)^2(c+a-b)^2 ≧ (a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2)
(1) 複素数 a, b, c に対して、|\sqrt(a^2+b^2+c^2)| ≦ max(|a|+|b|, |b|+|c|, |c|+|a|)
(2) [1999 Poland] 実数 a, b, c, d に対して、(a+b+c+d)^2 ≦ 3(a^2+b^2+c^2+d^2)+6ab
(3) 正の数 a, b, c に対して、(a^2b+b^2c+c^2a)(ab^2+bc^2+ca^2) ≧ 9(abc)^2
(4) 正の数 a, b, c, d に対して、ab^4+bc^4+cd^4+da^4 ≧ abcd(a+b+c+d)
(5) [2003 Poland] 正の数 a, b, c, d に対して、(a+b+c+d)^3 ≦ 4(a^3+b^3+c^3+d^3)+24(abc+bcd+cda+dab)
(6) [2002 Poland] 正の数 a_k, b_k に対し、Π[k=1 to n]a_k + Π[k=1 to n]b_k ≦ Σ[k=1 to n]√{(a_k)^2+(b_k)^2}
(7) [1999 Poland] 整数 a_k, b_k に対して、 Σ[i<j](|a_i-a_j|+|b_i-b_j|) ≦ Σ[i<j]|a_i-b_j|
563:条件不等式
04/11/01 09:24:10
(1) [2000 Poland] 正の数 a, b, c が a+b+c=1 をみたすとき、a^2+b^2+c^2+2√(3abc) ≦ 1
(2) [1996 Poland] a, b, c ≧ 0 と 1/2 ≧ p, q, r ≧ 0 が、a+b+c = p+q+r = 1 をみたすとき、pa+qb+rc ≧ 8abc
(3) [1999 Turkey] a≧b≧c≧0 に対して、(a+2c)(c+3b)(b+4a) ≧ 60abc
(4) [1991 Vietnum] a≧b≧c>0 に対して、b^2c/a + c^2a/b + a^2b/c ≧ a^2+b^2+c^2
(5) [1993 Itary] 0≦a, b, c≦1 に対して、a^2+b^2+c^2 ≦ a^2b+b^2c+c^2a+1
類題に [1994 Rumania] 0≦a, b, c≦1 に対して、a+b+c ≦ ab+bc+ca+1 がありました。
(6) 0 < a, b, c < 1/2 に対して、(1/a -1)(1/b -1)(1/c -1) ≧ {3/(a+b+c) -1}^3
(7) 自然数 m, n と実数 0≦x≦1 に対して、(1-x^n)^m+{1-(1-x)^m}^n ≧1
564:最大最小値問題
04/11/01 09:24:35
(1) 正の数 a, b, c に対して、(a^3+b^3+c^3)/(a+b)(b+c)(c+a) の最小値。
(2) 実数 a, b, c が a^2+b^2+c^2≠0 をみたすとき、 abc(a+b+c)/{(2a^2+b^2)(b^2+2c^2)} の最大値。
(3) a^2+b^2+c^2=1 をみたす実数 a, b, c と、非負実数 p, q, rに対して、次式の最大値と最小値。
\sqrt{(pa)^2+(qb)^2+(rc)^2} + \sqrt{(pb)^2+(qc)^2+(ra)^2} + \sqrt{(pc)^2+(qa)^2+(rb)^2}
(4) 異なる実数 a, b, c が bc+ca ≧ 1+ab+c^2 をみたすとき、次式の最大値。ただし n は自然数。
{(a-b)^(2n+1)+(b-c)^(2n+1)+(c-a)^(2n+1)}/{(a-b)(b-c)(c-a)}
(5)-(i) 非負実数 a, b, c が a+b+c=1 をみたすとき、(1+a^2)(1+b^2)(1+c^2) の最小値。
(5)-(ii) 非負実数 a, b, c が a+b+c=1 をみたすとき、(1+√a)(1+√b)(1+√c) の最小値。
(6) 非負実数 a, b, c と自然数 n に対して、常に次式が成り立つような定数 k の最小値。
k(a^3+b^3+c^3)+(9-3k)abc ≧ (a+b+c)(a^2+b^2+c^2)
565:三角形と三角関数の不等式
04/11/01 09:24:59
(1) [1963 Eotvos] 0<x<π/2 のとき、(1/(sin x)+1)(1/(cos x)+1) > 5
(2) [1978 Austria] tan k (k = 1度, …, 44度)の相加平均をA、相乗平均をGとおくとき、A > (√2)-1 > G
(3) [1959 IMO shortlist] 0≦x≦π/2、π/6<y<π/3 のとき、
tan{(π sin x)/(4 sin y)} + tan{(π cos x)/(4 cos y)} > 1
(4) 0<x<π に対して、{sin(x)/x}^3 < {(π^2-x^2)/(π^2+x^2)}^2 [類 : 不等式への招待 P.39 ]
(5) 0<x<1 に対して、(1-x^2){1+(x-x^2)^3}/(1+x^2) < (sin πx)/(πx)
(6) [1994 Poland] △ABCに対して、1/a + 1/b + 1/c ≦ 1/(a+b-c) + 1/(b+c-a) + 1/(c+a-b)
(7) △ABCに対して、{(b+c)cosA}/a + {(c+a)cosB}/b + {(a+b)cosC}/C ≧ 9(a+b+c)
(8) 鋭角三角形ABCに対して、内接円の半径を r とするとき、
a^2(cos A/2)/\sqrt(b^2+c^2) + b^2(cos B/2)/\sqrt(c^2+a^2) + c^2(cos C/2)/\sqrt(a^2+b^2) ≧ (9r√2)/2