不等式スレッドat MATH
不等式スレッド - 暇つぶし2ch175:132人目の素数さん
04/06/04 01:59
[149]の最小値の証明について、>>162-166より
 x^2 ≦ 1-(4/3r) + (2/3r){1+(x^r)}(x^r)
ここで r=(3/2)λ/(1+λ) を代入すると
 1+λx^2 ≦ {(1+λ)・{1+2(x^r)}^2}/9 ≦ (1+λ)・{1+2(x^r)}^2

したがって
1/(1+λx^2) + 1/(1+λy^2) + 1/(1+λz^2)
 ≧ 1/(1+λ)・(1/{1+2(x^r)} + 1/{1+2(y^r)} + 1/{1+2(z^r)})

ここまでは分かりましたが、最後に
1/{1+2(x^r)} + 1/{1+2(y^r)} + 1/{1+2(z^r)} ≧ 3
を示すには どうすればよいのでしょうか?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch