04/09/17 23:49:54
>>518って>>532のヒントがあるととたんにそりゃそうだって思えるようになるな。
たとえばOABCがOA、OB、OC、AB、BC、CAが全部奇数と仮定して
↑OA=a、↑OB=b、↑OC=cとおく。仮定から|a|、|b|、|c|は全部奇数で
2a・b、2b・c、2c・aは全部奇数でmod8で1。ところでOABCを端点とする四面体の体積は
det|[[(a,a),(a,b),(a,c)],[(b,a),(b,b),(b,c)],[(c,a),(c,b),(c,c)]]であるがそれは0。
よってとくにdet|[[2(a,a),2(a,b),2(a,c)],[2(b,a),2(b,b),2(b,c)],[2(c,a),2(c,b),2(c,c)]]
は0でなければならない。しかし一方これは全成分が整数で対角成分がmod8で2、
その他の成分がmod8で1。よってとくに
det|[[2(a,a),2(a,b),2(a,c)],[2(b,a),2(b,b),2(b,c)],[2(c,a),2(c,b),2(c,c)]]はmod8で4。矛盾。