04/09/12 23:57:06
>>515
とりあえず試験にもかけそうな解答ではこんな感じでどうだろう。
Vnを最初にn回連続表がでた時点をあたえる確率変数、
Xnを最初にn回連続表がでた直後の試行が裏であった場合という事象
としてE(Vn)=anとおくとき
a(n+1)
=E(V(n+1))
=(1/2)E(Xn|V(n+1))+(1/2)E(notXn|V(n+1))
=(1/2)E(Xn|V(n+1))+(1/2)(E(notXn|V(n))+1)
=(1/2)(E(Vn)+1+E(V(n+1)))+(1/2)(E(V(n))+1)
=(1/2)(an+1+a(n+1))+(1/2)(an+1)
∴a(n+1)=2an+2。
E(Vn)がちゃんと収束することも上の議論をすこし丁寧にやればでるね。