04/09/10 21:40:05
>>462
よく分からんが、(1)の別解。 つーても、>>461をほとんど見てないw
別解
円に内接する四角形ABCDの二点A,Cを固定して考える。
残りの二点B,Dを動かすことを考える。
明らかに、線分ACからみて、B,Dが同じ側にある場合最大値を取らない。
さらに、△BACの面積を底辺をACとして考えると、ACは固定されているため
高さのみでその面積が決定される。このとき、点Bの位置はBA=BCなる点に決定される。
同様に点Dの位置も決定される。
明らかに、この場合線分BDは円の直径になる。そのため、BDの長さは固定される。
次に、二点ACを動かす。明らかにAC⊥BDが成立するため、四角形ABCDの面積は
AC*BD/2で与えられる。よって、BDが固定されているとき、ACが最大になればいい。
この場合、ACも・・・以下略