04/01/05 13:13
>>199
気分的に a[k] = a_k と書かせてもらう. (1) は自明, (2) は簡単, ということで
東大京大レベルじゃあないと思うが..
(1) n についての数学的帰納法を用いる.
0 のとき明らか. n-1 で成立するとする. n のとき
(cosx)^n = (cosx)^n-1 cos(x)
= a_0 cos(x) + Σ[k=1,n-1] a_k cos(kx) cos(x)
= a_0 cos(x) + Σ[k=1,n-1] a_k/2 {cos[(k+1)x]+cos[(k-1)x]}
= Σ[k=0,n] b_k cos(kx)
よって成立する.
(2) (cosx)^n = Σa_k cos(kx) において
x = 0 とすると 1 = Σa_k
両辺を x で2回微分して x = 0 とすると n = Σa_k k^2
従って Σ(k^2-n)a_k = Σk^2a_k - nΣa_k = 0