25/07/19 14:23:39.13 jT6bEcWg.net
>>236 まとめ
1)まず、列長さ有限Lのしっぽ同値類を考えると
・箱に一様分布の1~mの整数を入れたとき
全体Ω=m^L、一つの同値類の場合の数 m^(L-1)
一つの同値類中の
決定番号dが1からL-1までが 全体の1/m。決定番号d=Lが、全体の1-1/m
・箱に一様分布の区間[0,1]の実数を入れたとき
全体Ω=[0,1]^L、一つの同値類の場合の数 [0,1]^(L-1)
一つの同値類中の
決定番号dが1からL-1までが 全体比で0。決定番号d=Lが、全体比で1
2)次に、列長さ可算無限でしっぽ同値類を考えると
・箱に一様分布の1~mの整数を入れたとき
全体Ω=m^∞、一つの同値類の場合の数 m^∞
一つの同値類中の
決定番号dが有限は、零集合をなす。決定番号d=∞が、全体Ωの殆どすべて。
・箱に一様分布の区間[0,1]の実数を入れたとき
全体Ω=[0,1]^∞、一つの同値類の場合の数 [0,1]^∞
一つの同値類中の
決定番号d有限は 全体比で0(零集合)。決定番号d=∞が、殆どすべて
3)さて、これを踏まえて 箱入り無数目の決定番号による確率計算を検討しよう
箱入り無数目では、列を100列作って 99列を開けて 未開の1列の決定番号と比較するという
(スレリンク(math板:3番) ご参照)
いまこれを、抽象化すると 箱を開けた列の決定番号の最大値Dと
未開列のまだ不明な決定番号dkとの比較を考えることになる
ところが、このdkは 上記2)項の通り ∞に発散している量だから
もし、最大値Dが有限ならば、
『s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない』は、言えない
よって、箱入り無数目の決定番号を使う数当て手法は、機能しない!■
以上